
Observer reliability is a central concern whenever be-
havior is coded by trained observers. If different observ-
ers view the same stream of behavior and code it using
the same coding scheme but obtain substantially different
data, then we cannot be confident about the objectivity or
quality of their data and hence cannot trust results from
analyses based on these data. When behavior is observed
continuously and coded sequentially, investigators usually
demand point-by-point, or local, agreement (Bakeman &
Gottman, 1997), using a set (or sets) of mutually exclu-
sive and exhaustive codes. For example, the codes “quiet–
alert,” “fussy,” “crying,” “rapid eye movement sleep,” and
“deep sleep” could be used to characterize an infant’s state.
However, a set of codes like these can be applied in more
than one way. For some of these applications, methods for
determining observer agreement are relatively straightfor-
ward, but for one relatively common and simple way of as-
signing codes, the methods are problematic. In the present
paper, we consider this problem and offer a solution.

Before presenting the problematic application of deter-
mining observer agreement, it is useful to consider two
unproblematic ways of assigning codes. One unproblematic
application involves presenting coders with a transcript
and asking them to assign codes to each unit of talk (or
other unit) identified in the transcript. Another application
involves presenting coders with a video recording of an
infant and asking them to identify onset and offset times
(e.g., to the nearest second) of the infant’s different states,
in which case we would think of the data as successive time
units to which codes had been assigned (Bakeman & Quera,
1995). In such cases, the behavior that is to be observed is
divided into units before coding, and coders need only as-
sign codes to the specified units. For cases that fit these two
applications, it has become conventional to report Cohen’s
kappa, an index that corrects for chance agreement and that
assesses the level of agreement between observers about
two mutually exclusive and exhaustive coding systems
(Bakeman & Gottman, 1997; Cohen, 1960).

 39 Copyright 2007 Psychonomic Society, Inc.

Observer agreement for event sequences:
Methods and software for sequence alignment

and reliability estimates

Vicenç Quera
Universidad de Barcelona, Barcelona, Spain

roger Bakeman
Georgia State University, Atlanta, Georgia

and

augusto gnisci
Seconda Università degli Studi di Napoli, Naples, Italy

When sequences of discrete events, or other units, are independently coded by two coders using a set of mutu-
ally exclusive and exhaustive codes, but the onset times for the codes are not preserved, it is often unclear how
pairs of protocols should be aligned. Yet such alignment is required before Cohen’s kappa, a common agreement
statistic, can be computed. Here we describe a method—based on the Needleman and Wunsch (1970) algorithm
originally devised for aligning nucleotide sequences—for optimally aligning such sequences; we also offer the
results of a simulation study of the behavior of alignment kappa with a number of variables, including number
of codes, varying degrees of observer accuracy, sequence length, code variability, and parameters governing the
alignment algorithm. We conclude that (1) under most reasonable circumstances, observer accuracies of 90%
or better result in alignment kappas of .60 or better; (2) generally, alignment kappas are not strongly affected
by sequence length, the number of codes, or the variability in the codes’ probability; (3) alignment kappas are
adversely affected when missed events and false alarms are possible; and (4) cost matrices and priority orders
used in the algorithm should favor substitutions (i.e., disagreements) over insertions and deletions (i.e., missed
events and false alarms). Two computer programs were developed: Global Sequence Alignment, or GSA, for
carrying out the simulation study, and Event Alignment, or ELign, a user-oriented program that computes align-
ment kappa and provides the optimal alignment given a pair of event sequences.

Behavior Research Methods
2007, 39 (1), 39-49

V. Quera, vquera@ub.edu

40 Quera, Bakeman, and Gnisci

However, more simply, coders could be presented with
a video recording and asked to identify events as they
occur in sequence, without noting any information regard-
ing time. Thus, coders simultaneously identify units of
behavior (or unitize) and code. Cases that fit this applica-
tion, which on its face seems quite simple, are in fact more
complex than the first two with respect to determining
observer agreement, because two observers may segment
the stream of behavior differently, thus even the number of
coded events might differ and their alignment in any case
would be ambiguous. As Bakeman and Gottman (1997)
wrote:

[Determining agreement about unitizing when]
coding events, without any time information, is in
some ways the most problematic [application] . . . If
 observers note only the sequence of events . . . then
determining the agreement as to unit boundaries is
more difficult. The two protocols would need to be
aligned, which is relatively easy when agreement is
high, and much more difficult when it is not, and
which requires some judgment in any case. (p. 69)

Thus, determining agreement for what Bakeman and
Quera (1995) call event sequences (a single stream of
coded events without time information), which they char-
acterize as the simplest of the sequential data types they
define, is more difficult than determining agreement for
seemingly more complex sequential data types.

In this article, we consider the issue of observer agree-
ment for event sequences. First we describe methods
for aligning such sequences, then we consider how their
agreement might best be assessed, and finally we offer the
results of simulation studies of the behavior of the agree-
ment index we recommend.

Sequence Alignment
Event sequences are simply strings of codes. Two differ-

ent strings of codes, each produced by an observer indepen-
dently coding the same stream of behavior, may well differ
in length because the observers unitized differently. The first
question, therefore, is: How should these two sequences
be aligned (i.e., which codes from Observer 1 should be
matched with which codes from Observer 2) so that we can
begin to assess the extent of agreement? What is desired
is an algorithm that does not leave alignment to individual
judgment, as Bakeman and Gottman (1997) suggested might
be necessary. Such an algorithm, one that determines the op-
timal global alignment between two sequences by means of
dynamic programming, is presented here.

The algorithm is adopted from sequence alignment and
comparison techniques that are routinely used by molecu-
lar biologists to find similarities among DNA sequences
in order to classify them and to search for patterns in the
sequences themselves (Durbin, Eddy, Krogh, & Mitchi-
son, 1998; Gusfield, 1997; Sankoff & Kruskal, 1999;
Waterman, 1995). The techniques have also been used in
speech processing, error detection and correction in com-
puter science, and stratigraphic analysis (for a review, see
Kruskal, 1999); for comparison of content in sociological
research papers (Abbott & Barman, 1997); and for career

path similarity analysis (McVicar & Anyadike-Danes,
2000; Scherer, 2001). An alternative method for com-
puting agreement between sequences was developed by
Dijkstra & Taris (1995), although it does not guarantee
optimal matching. Fichman (1999) presented a paper on
the potential usefulness of a specific sequence alignment
procedure for global matching of two event sequences
corresponding to partners in an interaction. More recently,
Fu (2001) developed ACT-PRO, a computer program that
analyzes sequences of behavioral events using measures
of sequence similarity based on alignment algorithms. To
our knowledge, the use of these alignment techniques for
the assessment of observer reliability has not been sys-
tematically explored to date, although Dijkstra (2007)
included one common algorithm as a tool for comparing
sequences in Sequence Viewer, a computer program for
the analysis of sequences for sociological events.

A Sequence Alignment Algorithm
First, some notation and terminology: Let C be a coding

scheme: C 5 {c1, c2, . . . , cK}, where ci is a code repre-
senting a discrete behavioral state, and K is the number of
different, exhaustive, and mutually exclusive codes. For
example, consider a coding scheme characterizing an in-
fant’s behavior in which letters are assigned to the different
states: C 5 {A 5 “quiet–alert”; B 5 “fussy or crying”;
C 5 “rapid eye movement sleep”; and D 5 “deep sleep”}.
Assume that two observers independently code the follow-
ing event sequences, S1 5 , s11, s12, . . . , s1m . and S2 5
, s21, s22, . . . , s2n ., where m and n are the lengths of Se-
quence 1 and Sequence 2, respectively. For example, S1 5
, BBACDACDAB . and S2 5, BACAACABABD ..
In general, m ? n, but even if m 5 n, we cannot take for
granted that s1i is aligned or paired with s2i for all i.

In order to align Sequence 1 with Sequence 2, some kind
of correspondence between their respective codes must
be established; that is, the sequences need to be globally
aligned. Alignment proceeds step by step, by considering
the transformations required to convert one sequence into
the other. The more transformations required, the greater
the distance between the two sequences. We begin with S1
and apply step-by-step transformations that build a new
sequence. When the transformation is complete, the new
sequence is identical to S2, and a key question is how many
steps were required to effect this transformation. At each
step, there are four possibilities: (1) an agreement or iden-
tity transformation, in which a code from S1 is paired with
an identical code from S2 and the common code is inserted
into the new sequence; (2) a disagreement or substitution,
in which a code from S1 is paired with a different code
from S2 and the S2 code is inserted into the new sequence;
(3) a deletion, in which a code from S1 is not paired with
any code from S2 and a hyphen (instead of the S1 code)
is inserted into the new sequence; and (4) an insertion, in
which a code from S2 ,is not paired with any code from S1
and the S2 code is inserted into the new sequence (with
a hyphen inserted into the S1 sequence). From the point
of view of Observer 1, deletions and insertions are errors
of omission and commission, respectively, on the part of
Observer 2.

OBserver aGreement fOr event seQuences 41

Given two event sequences, many different global align-
ments are usually possible. In fact, given two sequences
with lengths m and n, the number of possible global align-
ments, if code substitutions but not insertions and deletions
(indels) are permitted, is

 m n

m n

+

min(,)

(Ewens & Grant, 2001); this equation represents the lower
bound for the total possible number of alignments that per-
mit both indels and substitutions (see also Waterman, 1995).
For example, if m 5 n 5 100, that lower bound equals

200

100
9 1058

≅ ⋅ ,

hence looking for the best alignment by listing all pos-
sible alignments is essentially an impossible task. Our
objective is to determine an optimal alignment—one that
requires the fewest possible transformations and that re-
sults in the highest number of matching codes. Results
depend on whether we permit or disallow substitutions,
which is discussed below. In one example, disagreements
are permitted; in the second, only errors of omission and
commission are allowed. For example, for sequences S1
and S2, two possible global alignments in which the first
permits and the second disallows disagreements are

	
BBACDAC DAB BBAC DAC DAB

|

− − − −− −
|| | : | | : | | | | | | | | |

BACAACA− BBABD BACA ACAB ABD− − −

	

These alignments were obtained by means of a dynamic
programming algorithm, described subsequently, which
provides optimal alignments. For both of these alignments,
hyphens in the first sequence indicate that codes were in-
serted into the second one, whereas hyphens in the second
sequence indicate that codes from the first sequence were
deleted. Vertical lines indicate identity matches, and co-
lons indicate substitution matches.

Longest Common Subsequence
When substitutions were allowed, five transformations

were required, and the longest common subsequence of
identical or similar codes was BAC[DA]AC[DB]AB (nine
codes long), where [DA] indicates either D or A from the
first and second sequences, respectively—likewise [DB].
When substitutions were disallowed, seven transforma-
tions were required, and the longest common subsequence
of identical codes was BACACAB (seven codes long).
When two sequences are optimally aligned, the longest
common subsequence of agreement (LCSA) is obtained
(see, e.g., Hirschberg, 1997; Needleman & Wunsch, 1970).
If disagreements are permitted, then the LCSA consists of
identical or similar codes; if they are not, then the LCSA
consists of identical codes only. In both cases, the length
of the LCSA is denoted Λ. Other, more complex sequence
alignment methods exist (e.g., multiple global alignment
of many sequences; see Gusfield, 1997; Lawrence et al.,
1993), but because we are interested in finding the distance

between two sequences coded by independent observers,
we will focus on algorithms and measures for pairwise, or
simple global, alignment of two sequences.

Distance Between Sequences
The distance between two sequences, δ, can be defined

as the number of code insertions, I, deletions, D, and sub-
stitutions, S, that is required to convert one sequence into
the other; that is, δ 5 I 1 D 1 S (Gusfield, 1997; Kruskal,
1999; Levenshtein, 1965). The Levenshtein distance (also
known as the edit distance) between two sequences is de-
fined as the minimum number of code insertions, dele-
tions, and substitutions necessary to convert one sequence
into the other (but see Hirschberg, 1997); in other words,
it is the minimum number of transformations required to
convert one sequence into the other. The smaller the Lev-
enshtein distance, the greater the LCSA length will be.

Costs and Generalized Levenshtein Distance
Every possible transformation can be assigned a par-

ticular cost or weight. For a coding scheme with K codes,
a (K11) 3 (K11) cost matrix (or weight matrix, or scor-
ing function; see, e.g., Durbin et al., 1998; Giegerich &
Wheeler, 1996) is defined, where W 5 {wij} for i 5 0, 1,
. . . K, and j 5 0, 1, . . . K; where wij . 0 (i . 0, j . 0) is
the cost of substituting code j for code i; where wi0 (i . 0)
is the cost of deleting code i; and where w0j (j . 0) is the
cost of inserting code j. Substitution costs along the upper
left to lower right diagonal of W are zero, by definition.
Then the generalized Levenshtein distance (or GLD), or
 alphabet-weight edit distance (Gusfield, 1997), is the sum
of the number of insertions, deletions, and substitutions,
weighted by their corresponding costs:

 ∆ = + +
=

=

=

=

=

=

∑ ∑∑w w w
j

s

s I

i i j
u

u S

t

t D

s t u u0
1

0
11

,

where w0js, wit0, and wiu ju are the costs of the sth insertion,
the tth deletion, and the uth substitution in the sequences,
respectively. If wI 5 wD 5 wS 5 1 (i.e., if all insertions,
deletions, and substitutions are assigned identical costs),
then ∆ 5 I 1 D 1 S. If wI 5 wD 5 1 and wS 5 2, then a
code insertion followed by a code deletion has the same
cost as a code substitution. If wI 5 wD 5 1 and wS . 2,
then substitutions will not occur; an insertion followed
by a deletion would cost less than a substitution. The dis-
tance between sequences defines a true metric space of
sequences; that is, the Levenshtein distance has the reflex-
ive, symmetrical, and triangle inequality properties (Wa-
terman, 1995). Costs can be chosen according to specific
theoretical assumptions, or they can be estimated from the
data. In any case, costs are usually symmetrical; that is,
wij 5 wji. Costs can be estimated so that codes that occur
rarely have higher indel costs than codes that occur often.
As a general procedure, Mannila and Ronkainen (1997)
propose assigning empirical indel costs that are inversely
proportional to the code simple or unconditional frequen-
cies in the sequences being compared. Alternatively, costs
could be assigned in direct proportion to the codes’ un-
conditional frequencies, because it could be argued that

42 Quera, Bakeman, and Gnisci

mistakes such as inserting or deleting common codes, as
opposed to rare codes, should have more weight on ∆,
since detecting common events is easier than detecting
rare ones.

Weight Matrices
The weight matrix permits us to assign a different

weight to each insertion, deletion, and substitution, which
provides far more flexibility than may ever be desired
or desirable. In the context of DNA sequences, various
schemes for proportional weights might make sense, but
in the context of observer agreement, we think that al-
most always, absent a strong rationale, weights should be
limited to simple integers. Here we consider three pos-
sibilities. All agreements on the diagonal are set to zero,
by definition. In addition, (1) all other weights are set
to one (see Figure 1), thus giving disagreements, omis-
sions, and commissions equal weight; (2) omissions and
commissions are set to one, but disagreements are set to
two, thus counting a disagreement as the equivalent of
two omission–commission errors; and (3) omissions and
commissions are set to two, but disagreements are set to
one, thus giving omission–commission errors twice the
weight of disagreements. Of these three, we think the last
option may best reflect what investigators expect of ob-
server agreement.

In a similar fashion, although disallowing substitutions
is discussed as an option in the literature we have cited, we
would rarely recommend this option when observer agree-
ment is considered. Almost always, observers are as likely,
if not more likely, to disagree about how to categorize an
event as to commit errors of omission or commission; it
rarely makes sense, therefore, to disallow disagreements.
Nonetheless, comparing results obtained when disagree-
ments are permitted with results obtained when disagree-
ments are disallowed, as we occasionally do in this article,
can be instructive. Agreement is worse when disagree-
ments are not allowed, and so this case represents a lower
bound on agreement.

Needleman and Wunsch Algorithm
The algorithm that provides the optimal matching or

alignment between two sequences was developed inde-
pendently by several researchers from different fields dur-
ing the 1970s (Kruskal, 1999), and has been reinvented
since then (see, e.g., Mannila & Ronkainen, 1997).
Molecular biologists call it the Needleman and Wunsch

(1970) algorithm (hereafter referred to as the NW algo-
rithm); it belongs to a broad class of methods known as
dynamic programming, in which the solution for a spe-
cific subproblem can be derived from the solution for the
subproblem immediately preceding it. Applying dynamic
programming to sequence alignment means that finding
the optimal alignment between two sequences does not
require checking all possible alignments, but rather only a
very small portion of them. Dynamic programming pro-
ceeds step by step; at each step, three different possible
subalignments, which would add to the subalignments
accumulated from previous steps, are considered, and
two are discarded (why three possible subalignments are
chosen will be discussed shortly). Thus, at each step, two
thirds of the possible subalignments are discarded. As a
consequence, the method is exact (that is, it guarantees the
optimal solution) without being exhaustive (that is, it does
not explore all possible alignments; Galisson, 2000).

The goal of the algorithm is to determine an optimal
alignment—that is, the steps required to transform one
sequence into the other with the lowest generalized Lev-
enshtein distance and the longest common subsequence.
Thus the algorithm uses the cost matrix described earlier,
with different costs resulting in different alignments. The
algorithm uses three additional matrices, one to accumu-
late distances, one to accumulate lengths, and one for
pointers, as described shortly. Each of these matrices has
m11 rows and n11 columns, indexed 0, 1, . . . m, and 0,
1, . . . n, respectively, where m is the length of S1 and n the
length of S2. Row 0 indicates insertions; rows 1 to m are
labeled with the codes in the S1 sequence; column 0 in-
dicates deletions; and columns 1 to n are labeled with the
codes in the S2 sequence. The labeling of the sequences
is arbitrary; results are the same regardless of which se-
quence is labeled S1.

The distance matrix (D) accumulates generalized Lev-
enshtein distances; in particular, when complete, Dmn 5
∆(GLD) for S1 and S2. The length matrix (L) accumu-
lates common subsequence lengths; in particular, when
complete, Lmn 5 Λ (the length of the LCSA) for S1 and
S2. The pointer matrix (P), as described shortly, indicates
which of three preceding cells [for cell (r, c), preceding
cells are cell (r, c21), cell (r21, c21), and cell (r21, c),
indicated with !, %, and #, respectively] contributes to
the computation of Lrc and Drc. Pointers are used to build
the alignment by tracing them back from cell (m, n).

The NW algorithm works as follows. First, insertion
and deletion lengths are initialized to zero, thus L00 5
Lr0 5 L0c 5 0. Second, insertion and deletion distances
are initialized to their accumulative costs, thus D00 5 0,
Dr0 5 Dr21,0 1 w(s1r, 0), D0c 5 D0,c21 1 w(0, s2c), where
w(s1r, 0) is the cost of deleting the element at position r
of sequence S1, and w(0, s2c) is the cost of inserting the
element at position c of sequence S2 (e.g., D04 is the ac-
cumulative cost of inserting elements s21, s22, s23, and s24;
similarly, D30 is the accumulative cost of deleting elements
s11, s12, and s13). Third, insertion and deletion pointers are
initialized so that Pr0 5 # and P0c 5 !. (Thus, for the
expressions in the preceding sentences, r 5 1 to m and
c 5 1 to n). After row 0 and column 0 are initialized, itera-

Figure 1. A weight or cost matrix that weighs all insertions, de-
letions, and substitutions equally.

Delete c1 = A c2 = B c3 = C c4 = D

c1 = A

c2 = B

c3 = C

c4 = D

Insert —

1

1

1

1

1

1

1

1

—

—

—

—

1

1

1

1

1

1

1

1

1

1

1

1

OBserver aGreement fOr event seQuences 43

tions of the NW algorithm then fill in the remaining cells,
beginning with row 1 and considering columns 1 to n, then
row 2, etc. (or vice versa, beginning with column 1 and
considering rows 1 to m).

For each cell examined, the distance between the subse-
quences up to that point (i.e., s11 . . . s1r and s21 . . . s2c) is
computed as shown at the top of this page. In other words,
at cell (r, c), we select among three possible transforma-
tions in our ongoing effort to transform S1 into S2. We can
substitute code s2c for s1r or delete code s1r or insert code
s2c. The transformation selected is the one that results in
the lowest generalized Levenshtein distance for the sub-
sequence up to this point. Note that there are two kinds
of substitution. One occurs when s2c 5 s1r (an agree-
ment); the weight is zero and therefore they will always
be matched. The other occurs when s2c ? s1r (a disagree-
ment); these two codes are matched if substituting one for
the other increases the generalized Levenshtein distance
less than deleting the first code or inserting the second
one. The three possibilities at cell (r, c) are illustrated in
Figure 2.

Lrc and Prc are updated accordingly. If substitution was
chosen, then Prc 5 % and Lrc 5 Lr21,c21 1 1, because one
more code was added to the common subsequence ob-
tained at cell (r21, c21). If insertion was selected, then
Prc 5 ! and Lrc 5 Lr,c21, because no code was added to
the common subsequence obtained at cell (r, c21). If de-
letion was chosen, then Prc 5 # and Lrc 5 Lr21,c, because
no code was added to the common subsequence obtained
at cell (r21, c).

When transformations have equal costs, one must be se-
lected. The one selected can affect the specific alignment,
but because the generalized Levenshtein distance and the
length of the common subsequence are not affected, the
choice is inconsequential in terms of optimal alignment.
Still, to execute the algorithm, we need to break ties, for
which purpose we prioritize transformations (see SEQALN
software, Hardy & Waterman, 1997). Four possible prior-
ity orders are (1) substitution, deletion, insertion; (2) sub-
stitution, insertion, deletion; (3) deletion, substitution,
insertion; and (4) insertion, substitution, deletion.

Order 3 provides the upper envelope and Order 4 the
lower envelope of optimal alignments, in terms of the
trace described below. Orders 1 and 2 favor substitu-
tion. Because we think that disagreement about an event
is at least as common, if not more common, than errors
of omission and commission, and because generalized
Levenshtein distance and length of the common subse-
quence are not affected in any case, as a general rule we
recommend Order 1; later we consider the effect of mak-
ing other choices.

Application of the NW algorithm to sequences S1 and
S2, using Priority Order 1 and with all costs (i.e., inser-
tion, deletion, and substitution) identical and equal to one,
gives the results shown in Figure 3. This is the alignment

result (the one permitting disagreements) presented ear-
lier for those sequences:

BBACDAC DAB

| | | : | | : | |

− −

−−BACAACABABD

We can now see how the results (∆ 5 5 and Λ 5 9)
were obtained. In general, application of the NW algo-
rithm provides the generalized Levenshtein distance (∆ 5
Dmn) and the length of the longest common subsequence
(Λ 5 Lmn) for two sequences, whereas the P matrix is used
to generate the alignment, tracing the pointers back from
cell (m, n). As an example, Figure 4 shows how the align-
ment is generated from the pointers in Figure 3.

Measures of Agreement From Pairwise GSA
The NW algorithm yields two indices—the length of

the longest common subsequence of agreement and the
generalized Levenshtein distance (symbolized with Λ
and ∆, respectively)—that can be used as measures of ob-
server agreement for event sequences. The upper bounds
for both indices vary; specifically, the upper bound for
Λ is the minimum of m and n (that is, the length of the
shorter sequence), whereas the upper bound for ∆ de-
pends on sequence lengths and the specific costs used
as well. When assessing observer agreement, investiga-
tors are usually interested in knowing how a computed
measure of agreement departs from chance agreement.
However, the distributions of the measures of chance
agreement provided by the NW algorithm are “far from
being completely understood” (Waterman, 1995, p. 255),
although expected values and bounds of Λ and ∆ for ran-
dom sequences of infinite or very long lengths have
been estimated when code substitutions are disallowed
(see, e.g., Baeza-Yates, Gavaldà, Navarro, & Scheihing,
1999; Boutet de Monvel, 1998; Chvátal & Sankoff, 1999;
Dančík, 1994; Deken, 1979, 1999; Paterson & Dančík,
1994; Sankoff & Mainville, 1999). Although those results
are valid only for very long sequence lengths m and n,
event sequences recorded during observation sessions are

D D w s s D w s
rc r c r c r c r
= + () + ()− − −min , , ,

, ,1 1 1 2 1 1
0 ,, ,

,
D w s

r c c− + () 1 2
0

r − 1

c − 1

s r1 = r

D w s sr c r c− − + ()1 1 1 2, ,

D w sr c c, ,− + ()1 20

s cc2 =

D w sr c r− + ()1 1 0, ,

Drc

Figure 2. The three possible values for distance Drc between two
subsequences. The upper left cell (r21, c21) indicates substitu-
tion of code s2c for s1r; the upper right cell (r21, c) indicates dele-
tion of code s1r; and the lower left cell (r, c21) indicates insertion
of code s2c; the transformation that results in the lowest value for
Drc is selected.

44 Quera, Bakeman, and Gnisci

often not very long; common lengths are in the hundreds
and few are in the thousands. For that reason, we usually
cannot use expected values of chance agreement for infi-
nite n as a reference.

Therefore, in order to assess observer agreement once
sequences are aligned, the sequences’ agreements and dis-
agreements can be tallied in a (K11) 3 (K11) agreement
matrix of the sort used to compute Cohen’s kappa. The
first row indicates insertions (i.e., events not coded by Ob-
server 1 that were coded by Observer 2), and the first col-
umn indicates deletions (i.e., events coded by Observer 1
that were not coded by Observer 2), which accounts for
the K11 dimension. Figure 5 shows such a matrix for the
alignment between S1 and S2 given previously. A kappa
statistic can be defined in the usual way (Cohen, 1960)
as the probability of observed agreement minus chance
agreement divided by one minus chance agreement, but
with one qualification: Because the cell in the upper left
corner is a structural zero (once sequences are aligned,
no event can be coded as missed by both observers), the
agreements expected by chance need to be computed with
an iterative proportional fitting algorithm and not the usual
closed-form formula. Thus, for clarity, we term this statis-
tic alignment kappa and not Cohen’s kappa; for the data in
Figure 5, the alignment kappa is .48.

When substitutions are not allowed, the matter is more
complex—although as discussed earlier, we think this
constraint would rarely be imposed. With no substitutions
allowed, all cells indicating disagreement are structural
zeros, and the usual computations for expected agreement
do not apply. With this pattern of structural zeros, the con-
straints are such that for the model of quasi-independence,
an iterative proportional fitting algorithm, as is often used
for log-linear analysis (see, e.g., Bakeman & Robinson’s
ILOG program, 1994), computes expected frequencies

identical to those observed; thus, the value of kappa is zero.
More general solutions, based on iterative procedures and
permutations, for evaluating how a computed measure of
agreement between sequences departs from chance agree-
ment have been proposed (Altschul & Erickson, 1985;
Booth, Maindonald, Wilson, & Gready, 2004).

Values of Alignment Kappa Under Various
Simulated Conditions

In a previous paper (Bakeman, Quera, McArthur, &
Robinson, 1997), we used numerical simulation to study
values of observer agreement (e.g., Cohen’s kappa) for

S2
S1

Delete s21 = B s22 = A s23 = C s24 = A s25 = A s26 = C s27 = A s28 = B

Insert 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0

s11 = B

s12 = B

s13 = A

s14 = C

s15 = D

s16 = A

s17 = C

s18 = D

s19 = A

s1,10 = B

1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1

1 2 2 2 3 2 4 2 5 2 6 2 6 2 7 2 8 2 9 2

1 2 2 3 2 3 3 3 4 3 5 3 6 3 6 3 7 3 8 3

 2 2 1 3 2 3 3 4 3 4 4 4 5 4 6 4 7 4 8 4

 3 2 2 3 2 4 3 4 4 5 4 5 5 5 6 5 7 5 7 5

 4 2 3 3 2 4 2 5 3 5 4 6 5 6 5 6 6 6 7 6

 5 2 4 3 3 4 3 5 2 6 3 6 4 6 5 6 6 7 7 7

 6 2 6 3 4 4 4 5 3 6 3 7 4 7 5 7 6 7 6 8

 7 2 6 3 5 4 4 5 4 6 3 7 4 8 4 8 5 8 6 8

10 0

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0

0 1

1 1

 2 1

 3 1

 4 1

 5 1

 6 1

 7 1

 8 1

9 1 8 2 7 3 6 4 5 5 5 6 4 7 3 8 4 8 4 9 5 9

s29 = A s2,10 = B s2,11 = D

Figure 3. Dynamic programming table containing values of the distance, length, and pointer matrices after applying
the NW algorithm to sequences BBACDACDAB and BACAACABABD. Rows and columns correspond to positions in
Sequence 1 and Sequence 2, respectively; all costs were set to one. Each cell contains three entries: The first value is the
generalized Levenshtein distance between the subsequences up to positions r and c in the initial sequences; the second
value is the length of the subsequence that is common to both subsequences; and the third is a pointer. Pointers indicate
which neighbor cell contributed to the computation of distance and length for the current cell. Gray cells with values in
bold show the cells in the trace back from the bottom right cell to the top left one.

Figure 4. Trace back for obtaining the alignment between se-
quences BBACDACDAB and BACAACABABD.

Cell Pointer S1 S2 Transformation

(10,11) - insertion

(10,10) B -

(9,9) A -

(8,8) D substitution
(7,7) - insertion

(7,6) C -

(6,5) A -

(5,4) D substitution
(4,3) C -

(3,2) A -

(2,1) B -

(1,0) B deletion

(0,0) -

D

B

A

B

A

C

A

A

C

A

B

-

- -

OBserver aGreement fOr event seQuences 45

timed event sequences generated by observers of known
reliability, as specified in a simulation program. Thus,
simulation provides an opportunity denied us in actual
situations; it lets us know (or specify) the theoretical reli-
ability of observers before we attempt to measure their
actual reliability. Likewise, regarding event sequences,
it is especially interesting to know how the agreement
measures provided by the NW algorithm are related to
theoretical observer reliability because this allows us to
judge which values of alignment kappa, computed once
the observed event sequences are aligned, can reasonably
be regarded as indicators of good reliability.

Simulation Parameters
For the present simulation, we define observer reliabil-

ity as accuracy—that is, the observer’s correct detection
and coding of an event that has occurred (Bakeman et al.,
1997; Gardner, 1995). Given a coding scheme with K ex-
haustive and mutually exclusive codes, a (K11) 3 (K11)
matrix R 5 {ρij} of conditional probabilities is defined,
with both rows and columns numbered 0 to K. For i . 0,
j . 0, ρij is the probability that the observer records
code cj given that a behavior that should be coded ci has
 occurred. The sum of the values in each row of matrix
R equals one; diagonal cells contain accuracies, and
off-diagonal cells contain errors. Elements in column 0
are missed-event probabilities (see, e.g., Kaye, 1980) or
omission errors; that is, ρi0 is the probability that the ob-
server failed to detect a behavior that should have been
coded ci. Elements in row 0 are false alarm probabili-
ties (Kaye, 1980) or commission errors; that is, ρ0j is the
probability that the observer assigned a cj code when no
behavior actually occurred. For reliable observers, ρii are
close to one for all i (ρ00 5 0 by definition). An observer
may be more reliable with respect to certain behaviors
and less reliable with respect to certain others, in which
case diagonal elements would not be identical. Also, an
observer who fails to code a behavior correctly may favor
some false codings more than others, in which case off-
diagonal elements within a row would not be identical.
Finally, when two fallible observers are compared, it can
be assumed that both are equally reliable or not; in the
former case, a single reliability matrix describes both
observers, whereas in the latter, two different reliability
matrices should be assumed.

Two more probabilities are required for the simulation:
(1) the unconditional probability of a false alarm (α)—that
is, the probability that the observer may code any behavior
when no behavior has actually occurred (when a false alarm
occurs, the observer records a code cj with probability ρ0j);
and (2) the probability of missing an event (εi 5 ρi0)—that
is, the probability that the observer may not code anything
when a behavior has occurred that should have been coded
ci. When two fallible observers are compared, it can be
assumed that both α and εi are identical or different for
the two observers. If we assume, as we do here, that both
observers have the same accuracy, ρ, that ρ is the same for
all codes, and that all codes can be missed with identical
probability, ε, then the cells in the reliability matrix, R, are

as follows. (1) Diagonal cells are set as ρii 5 ρ. (2) Cells
in column 0 (missed events) are set as ρi0 5 ε 5 (12ρ)ω,
where 0 ω 1 is a parameter. Therefore, we define the
probability of missing an event as a decreasing function
of the accuracy that is associated with that event; for ex-
ample, given ω 5 .20, values for ε are .08, .06, .04, .02, and
0 when ρ equals .60, .70, .80, .90, and 1.00, respectively.
(3) Cells in row 0 (false alarms) are set as ρ0j 5 pj—that
is, the code unconditional probabilities. (4) Remaining off-
diagonal cells are set as ρij 5 (12ρ)(12ω)/(K21).

GSA Simulation Program
In order to understand how alignment kappa is related

to observer reliability, we developed a computer program
(GSA for Windows, available from the authors upon re-
quest) for carrying out several series of simulations guided
by values for variables we have used before (Bakeman
et al., 1997). Specifically, we considered values for ob-
server accuracy (ρ) of .60, .70, .80, .90, and 1.00; sequence
lengths (µ) of 25, 50, and 100; values for the number of
codes (K) of 3, 5, 10, and 20; and equiprobable, moder-
ately variable, and highly variable simple probabilities for
those codes. These probabilities were computed according
to this formula (see Bakeman et al., 1997, Table 1):

 p F K
F i K

FKi
(,)

()() / ()
,= + − − −1 2 1 1 1

where F is a factor governing variability of code uncon-
ditional probabilities and pi(F, K) is the simple prob-
ability of code ci (for all i, 1 through K) as a function of
factor F and number of codes K. When F 5 1, codes are
equiprobable, and pi(1, K) 5 1/K for all codes. The higher
the F, the higher the variability. In the simulations, F 5 1
was used for equiprobable, F 5 2 for moderately variable,
and F 5 4 for highly variable probabilities. For example,
when K 5 5 and F 5 4, probabilities are .050, .125, .200,
.275, and .350. Rarely would probabilities be so neatly
graduated in an actual investigation, but the differences
between smallest and largest probabilities represented by
our three cases should provide some guidance when inves-
tigators encounter a similar range of differences in their
simple probabilities.

Each simulation run started with the generation of a
random latent event sequence with specified length µ

Observer 2
Observer 1 – A B C D Sum

– 0 1 0 0 1
A 0

0
3 0 0 0

0 0B 1
C 0 0 0 0
D 0

Sum 1 5

2
2

1 1 0 0
3 2 1

2
3
3
2
2

12

Figure 5. Agreement matrix when substitutions are allowed (all
indel and substitution costs equal 1), obtained from the alignment
between sequences BBACDACDAB and BACAACABABD.

46 Quera, Bakeman, and Gnisci

for number of codes K with variability F; this represents
the true state of affairs. Then, two observed or manifest
event sequences were generated according to specified
parameters for ρ, α, and ω; these represent the work of
fallible coders. Given a latent sequence, in order to gener-
ate codes for one observed sequence, for every code ci in
the latent sequence, first an extra code or false alarm may
be generated with probability α; extra codes are sampled
according to their simple probabilities pj. Then, the la-
tent code may generate either one observed code with
probability 12(12ρ)ω, or it may be missed with prob-
ability ε 5 (12ρ)ω, thus not generating a code at all; if
an observed code must be generated, then it is sampled
according to the simple code probabilities. It can be dem-
onstrated that the expected length of a manifest sequence
equals µ[11α2(12ρ)ω]. In our simulations, we consid-
ered values of α 5 0 and .2 and ω 5 0 and .2. Therefore,
the lengths of the manifest sequences ranged, on average,
from 23 (when µ 5 25, ρ 5 .6, α 5 0, ω 5 .2) to 120
(when µ 5 100, ρ 5 1, α 5 .2, ω 5 .2). In each simula-
tion, the expected length of both manifest sequences was
identical, because the same reliability parameters were
assumed for the two observers; however, when both false
alarms and missed events were possible, the actual lengths
of the two manifest sequences could differ, as often hap-
pens with observers. The pair of manifest sequences was
then aligned with the NW algorithm, an agreement matrix
was obtained, and alignment kappa was computed for it.
Finally, the mean alignment kappa was calculated for all
the pairs of sequences that had been generated under the
same conditions.

In order to align the sequences, three different costs ma-
trices and four priority orders were applied to the NW al-
gorithm. Costs matrices were (1) both indel and substitu-
tion costs 5 1; (2) indel costs 5 1, substitution costs 5 2;
and (3) indel costs 5 2, substitution costs 5 1. Code sub-
stitutions were possible in all three cases. Priority orders
were those described above; since the priority order af-
fects the trace back but not the total number of agreements
between the sequences, tallies in the off-diagonal cells of
the agreement matrix may vary when the priority order is
varied, and thus different kappas can be obtained.

In sum, the following parameters were varied systemat-
ically in the simulations according to a 5 3 3 3 4 3 3 3
2 3 2 3 3 3 4 factorial design. (1) Observer accuracy:
ρ 5 .60, .70, .80, .90, 1.00. (2) Latent sequence length:
µ 5 25, 50, 100. (3) Number of codes: K 5 3, 5, 10, 20.
(4) Code variability: F 5 1 (equiprobable), 2 (moderate),
4 (high). (5) False alarm probability: α 5 0, .20. (6) Pa-
rameter for missing event probability: ω 5 0, .20. Ac-
tual missing event probabilities were thus ε 5 0 (for any
value of ρ, when ω 5 0) and ε 5 .08, .06, .04, .02, and 0
(for ρ 5 .60, .70, .80, .90, 1.00, when ω 5 .20, respec-
tively). (7) Cost matrices: (a) indels 5 substitutions 5 1;
(b) indels 5 1, substitutions 5 2; (c) indels 5 2, substitu-
tions 5 1. (8) Priority orders (i.e., Orders 1–4): (a) sub-
stitutions, deletions, insertions; (b) substitutions, inser-
tions, deletions; (c) deletions, substitutions, insertions;
(d) insertions, substitutions, deletions.

For each combination of these parameters, 2,000 latent
sequences were simulated, their corresponding manifest
sequences were generated and aligned, and kappas were
computed for the agreement tables obtained from the
alignments. In total, 17,280,000 alignment kappas (8,640
design cells 3 2,000 pairs of manifest sequences) were
calculated. Results were summarized by averaging the
kappas within each design cell. Only the most relevant
results will be detailed here; the complete table of mean
kappas is available from the authors upon request.

Simulation Results
Figures 6, 7, 8, and 9 show mean values of kappa as a

function of observer accuracy for selected combinations
of parameters. Each point in the figures represents the
mean value of kappa for 2,000 cases. Observer accuracies
of .70, .80, .90, and 1 are displayed; for accuracies less
than .70, essentially all mean values of kappa were below
.50—values that are rarely regarded as acceptable.

Figures 6 and 7 portray three sets of two lines each.
The top set we regard as a best case scenario: a longer se-
quence of many, equiprobable codes with no false alarms
or missed events (µ 5 100, K 5 20, F 5 1, α 5 ω 5 0).
We regard the middle set as a worse case scenario: a
shorter sequence of few codes varying in probability but
with no false alarms or missed events (µ 5 25, K 5 3,
F 5 4, α 5 ω 5 0). The bottom set is a worst case sce-
nario: like the middle set (worse case) but with the addi-
tion of false alarms and missed events (µ 5 25, K 5 3,
F 5 4, α 5 ω 5 .20). We also considered a fourth case
(µ 5 100, K 5 20, F 5 1, α 5 ω 5 .20); its results were
slightly better than those of the worst case scenario, but

.20

.40

.60

.80

1.00

.70 .80 .90 1.00
Observer Accuracy

M
ea

n
 κ

Figure 6. Mean values for kappa for varying observer accura-
cies, with identical indel and substitution costs 5 1 and varying
alignment priority orders. The top set of lines corresponds to a
best case scenario (µ 5 100, K 5 20, F 5 1, α 5 ω 5 0); the mid-
dle set corresponds to a worse case scenario (µ 5 25, K 5 3, F 5 4,
α 5 ω 5 0); and the bottom set corresponds to a worst case sce-
nario (µ 5 25, K 5 3, F 5 4, α 5 ω 5 .20). Within each set, lines
for Priority Orders 1 (lower line) and 3 (upper line) are shown.

OBserver aGreement fOr event seQuences 47

sufficiently similar that we decided for simplicity not to
consider the fourth case further.

The values graphed in Figure 6 indicate the effect of
varying priority order (for these results, indel and substi-
tution costs were identical; i.e., indel 5 substitution 5 1).
The lower line in each set represents Order 1 whereas the
upper represents Order 3; Orders 2 and 4 gave essentially
the same results as Orders 1 and 3, respectively, so they
are not shown. The difference between Orders 1 and 3 in-
creased somewhat as accuracy declined, but was never
great. Consequently, we recommend using Order 1 when
aligning sequences because it is slightly more conserva-
tive (i.e., it gives slightly lower values of alignment kappa).
Moreover, Order 1, which specifies that substitutions are
given priority over deletions and insertions, strikes us as
more realistic than Order 3. Consequently, subsequent
simulation results are given for Order 1 only. Otherwise,
we conclude from Figure 6 that, except for the most ex-
treme worst case scenarios, investigators can reasonably
conclude that alignment kappas of .60 or better indicate
observers who are at least 90% accurate.

The values graphed in Figure 7 indicate the effect of
varying cost matrices. The lower line in each set favors
substitutions (indel 5 2 and substitutions 5 1); the mid-
dle line favors neither (indel 5 substitution 5 1, just as
for the results in Figure 6); and the upper line favors in-
sertions and deletions (indel 5 1 and substitutions 5 2).
Costs have little effect on the best case scenario, but their
effect increases for less-than-ideal scenarios, especially
as observer accuracy declines. The lowest alignment

kappa values are obtained when substitutions are favored.
Consequently, we recommend specifying indel 5 2 and
substitutions 5 1 when aligning sequences, because this
specification is slightly more conservative. Moreover, this
specification, like Order 1, strikes us as more realistic than
favoring insertions and deletions (disagreements are more
likely than missed events and false alarms). Consequently,
subsequent simulation results are given for indel 5 2 and
substitutions 5 1 only. Otherwise, we conclude from Fig-
ure 7, as we did with Figure 6, that, except for the most
extreme worst case scenarios, investigators can reasonably
conclude that alignment kappas of .60 or better indicate
observers who are at least 90% accurate.

The values graphed in Figure 8 provide a comparison
of the effect of varying the number of codes and sequence
lengths for equiprobable codes, keeping other factors con-
stant (i.e., F 5 1, α 5 ω 5 0, substitutions favored over
indels, and Priority Order 1). The top set of lines represents
K 5 20; the bottom, K 5 3. The lower, middle, and upper
lines in each set (separate lines are not always visible) rep-
resent µ 5 25, 50, and 100, respectively. Alignment kappas
were higher when more codes were defined (i.e., when K 5
20), as expected, but sequence length had only a slight ef-
fect (when codes were few, alignment kappa became some-
what higher for longer sequences as observer accuracy
declined). Under ideal circumstances (i.e., K $ 20), the
relationship between observer accuracy and mean kappa
is almost linear, and accuracy can be estimated approxi-
mately as ρ (3κ12)/5, for κ $.40, Order 1, and substitu-
tions favored over indels. We conclude that, all else being
equal, alignment kappa is not much affected by sequence
length; however, higher values can be expected when a
greater versus a lesser number of codes is defined.

.20

.40

.60

.80

1.00

.70 .80 .90 1.00

Observer Accuracy

M
ea

n
 κ

Figure 7. Mean values for kappa for varying observer accura-
cies with Alignment Priority Order 1 and varying sets of costs.
The top set of (overlapping) lines corresponds to a best case sce-
nario (µ 5 100, K 5 20, F 5 1, α 5 ω 5 0); the middle set corre-
sponds to a worse case scenario (µ 5 25, K 5 3, F 5 4, α 5 ω 5 0);
and the bottom set corresponds to a worst case scenario (µ 5
25, K 5 3, F 5 4, α 5 ω 5 .20). Within each set, lines for differ-
ent costs are shown. Lower line, indel 5 2 and substitutions 5 1;
middle line, indel 5 substitution 5 1; upper line, indel 5 1 and
substitutions 5 2.

.20

.40

.60

.80

1.00

.70 .80 .90 1.00

Observer Accuracy

M
ea

n
 κ

Figure 8. Mean values for kappa for varying observer accu-
racies and sequence lengths, with Alignment Priority Order 1,
indel costs 5 2 and substitution costs 5 1, and equiprobable
codes (F 5 1); false alarms and missing events are not possible
(α 5 ω 5 0). The top set of lines corresponds to K 5 20, and the
bottom set corresponds to K 5 3. Within each set, lines repre-
sent different latent sequence lengths; lower, middle, and upper
lines 5 25, 50, and 100, respectively, although separate lines are
not always visible.

48 Quera, Bakeman, and Gnisci

The values graphed in Figure 9 provide a comparison of
the effect of varying code variability and sequence length
when few codes are defined, keeping other factors con-
stant (i.e., K 5 3, α 5 ω 5 0, substitutions favored over
indels, and Priority Order 1). The top set of lines repre-
sents µ 5 100; the bottom, µ 5 25 (although the sets over-
lap). The lower, middle, and upper lines in each set repre-
sent F 5 4, 2, and 1, respectively. Alignment kappas were
a bit higher for longer sequences (i.e., when µ 5 100), as
expected; likewise as expected, values of alignment kappa
became somewhat higher as code variability decreased.
We conclude that code variability has only a small effect
on alignment kappa, other parameters being constant. As
Figure 9 shows, when codes are highly variable, mean
kappa is smaller than when the codes are equiprobable,
but the effect of variability diminishes as sequence length
increases. For long sequences, code variability has little
effect on kappa, especially for high levels of observer ac-
curacy; the effect presumably would be even smaller for
values of K higher than the 3 assumed by Figure 9.

Summary and Recommendations
Sequences of discrete events, utterances, or some other

unit that have been independently coded by two coders
using a set of mutually exclusive and exhaustive codes
can be aligned using a straightforward adaptation of
Needleman and Wunsch’s (1970) algorithm, an algorithm
initially devised for aligning nucleotide sequences. Once
aligned, an agreement kappa can be computed, which
provides an estimate of observer agreement. We have
termed this alignment kappa; it differs from the usual
Cohen’s (1960) kappa only in that the upper left cell of
the agreement matrix is a structural zero, which means
that expected frequencies cannot be computed with the

usual formula but instead require an iterative proportional
fitting algorithm, as is commonly used in log-linear analy-
ses (Bakeman & Robinson, 1994).

Using a computer program (GSA) that we devised for
the purpose, we generated thousands of pairs of sequences;
these were then aligned and their alignment kappa com-
puted. We varied a number of parameters, including ob-
server accuracy, latent sequence length, the number of
codes defined, the variability of the probabilities that those
codes were used, and the probabilities of false alarms and
missed events (which, when not zero, result in pairs of se-
quences whose lengths differ). Other parameters that were
varied were specific to the NW algorithm and included
different cost matrices and various priority orders.

From the simulations, we concluded that under most
reasonable circumstances, observer accuracies of 90% or
better result in alignment kappas of .60 or better. All else
being equal, kappa values were not strongly affected by
sequence length, the number of codes, or the variability in
their probability; however, they were adversely affected,
as expected, by increasing probabilities of missed events
and false alarms. We also concluded that, in the interest of
being both conservative and realistic, cost matrices and pri-
ority orders should favor substitutions (i.e., disagreements)
over insertions and deletions (i.e., missed events and false
alarms), absent a strong rationale for doing otherwise.

We also developed a second user-oriented computer
program, ELign, which aligns event sequences and com-
putes alignment kappa. The user provides two files in Se-
quential Data Interchange Standard (SDIS; Bakeman &
Quera, 1995) format; the first file contains one or more
event sequences as coded by one observer, and the sec-
ond contains the corresponding sequence or sequences as
coded by a second observer. ELign allows the user to spec-
ify the cost matrices. Possibilities are: (1) indel costs 5 2,
substitution costs 5 1; (2) indel costs 5 substitution
costs 5 1; (3) indel costs 5 1, substitution costs 5 2;
(4) indel costs 5 1, substitution costs 5 3 (meaning no
substitutions are permitted). Any of these default weights
can be edited if the user has a reason for preferring other
weights. As noted earlier, we recommend the first option,
which is the program default. ELign also allows users to
specify priority orders, although again as noted earlier,
we recommend the program default Order 1, which favors
substitutions.

ELign always displays the value of alignment kappa;
however, the user can also request that all alignments,
agreement matrices, and other matrices produced by the
alignment algorithm be displayed. ELign is written in Pas-
cal (Borland’s Delphi); an executable version of the pro-
gram can be downloaded at no cost from the authors’ Web
sites, www2.gsu.edu/~psyrab/BakemanPrograms.htm or
www.ub.es/comporta/vquera/.

AUThOR NOTE

Correspondence concerning this article should be addressed to V. Quera,
Departamento de Metodología de las Ciencias del Comportamiento,
Universidad de Barcelona, Campus Mundet, Paseo Valle de Hebrón, 171,
E-08035 Barcelona, Spain (e-mail: vquera@ub.edu).

.20

.40

.60

.80

1.00

.70 .80 .90 1.00

Observer Accuracy

M
ea

n
 κ

Figure 9. Mean values for kappa for varying observer accu-
racies and degrees of code variability, with K 5 3 codes, Prior-
ity Order 1, and indel costs 5 2 and substitution costs 5 1; false
alarms and missing events are not possible (α 5 ω 5 0). Con-
tinuous lines represent µ 5 100, and dashed lines 5 25. Lower,
middle, and upper lines in each set represent F 5 4, 2, and 1,
respectively.

http://www.ub.es/comporta/vquera/
http://www2.gsu.edu/~psyrab/BakemanPrograms.htm

OBserver aGreement fOr event seQuences 49

REFERENCES

Abbott, A., & Barman, E. (1997). Sequence comparison via alignment
and Gibbs sampling: A formal analysis of the emergence of the mod-
ern sociological article. Sociological Methodology, 27, 47-87.

Altschul, S. F., & Erickson, B. W. (1985). Significance of nucleotide
sequence alignments: A method for random sequence permutation
that preserves dinucleotide and codon usage. Molecular Biology &
Evolution, 2, 526-538.

Baeza-Yates, R. A., Gavaldà, R., Navarro, G., & Scheihing, R.
(1999). Bounding the expected length of longest common subse-
quences and forests. Theory of Computing Systems, 32, 435-452.

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An
introduction to sequential analysis (2nd ed.). New York: Cambridge
University Press.

Bakeman, R., McArthur, D., Quera, V., & Robinson, B. F. (1997).
Detecting sequential patterns and determining their reliability with
fallible observers. Psychological Methods, 2, 357-370.

Bakeman, R., & Quera, V. (1995). Analyzing interaction: Sequential
analysis with SDIS and GSEQ. New York: Cambridge University
Press.

Bakeman, R., & Robinson, B. F. (1994). Understanding log-linear
 analysis with ILOG: An interactive approach. Hillsdale, NJ: Erlbaum.

Booth, H. S., Maindonald, J. H., Wilson, S. R., & Gready, J. E.
(2004). An efficient Z-score algorithm for assessing sequence align-
ments. Journal of Computational Biology, 11, 616-625.

Boutet de Monvel, J. (1999). Extensive simulations for longest com-
mon subsequences: Finite size scaling, a cavity solution, and configu-
ration space properties. European Physical Journal B, 7, 293-308.

Chvátal, V., & Sankoff, D. (1999). An upper-bound technique for
lengths of common subsequences. In D. Sankoff & J. B. Kruskal
(Eds.), Time warps, string edits, and macromolecules: The theory and
practice of sequence comparison (2nd ed., pp. 353-357). Stanford,
CA: CSLI Publications.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Edu-
cational & Psychological Measurement, 20, 37-46.

Dančík, V. (1994). Upper bounds for the expected length of longest
common subsequences. Bulletin of the European Association for The-
oretical Computer Science, 54, 248.

Deken, J. (1979). Some limit results for longest common subsequences.
Discrete Mathematics, 26, 17-31.

Deken, J. (1999). Probabilistic behavior of longest-common-
subsequence length. In D. Sankoff & J. Kruskal (Eds.), Time warps,
string edits, and macromolecules: The theory and practice of se-
quence comparison (2nd ed., pp. 359-362). Stanford, CA: CSLI
Publications.

Dijkstra, W. (2007). Sequence Viewer (Version 4.2a). [Computer soft-
ware]. Retrieved from home.fsw.vu.nl/w.dijkstra/sequenceviewer
.html.

Dijkstra, W., & Taris, T. (1995). Measuring the agreement between
sequences. Sociological Methods & Research, 24, 214-231.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological
sequence analysis: Probabilistic models of proteins and nucleic acids.
Cambridge: Cambridge University Press.

Ewens, W. J., & Grant, G. R. (2001). Statistical methods in bioinfor-
matics: An introduction. New York: Springer.

Fichman, M. (1999). Finding patterns in sequences: Applying sequence
comparison techniques to study behavior processes. Unpublished
manuscript, Carnegie Mellon University.

Fu, W.-T. (2001). ACT-PRO action protocol analyzer: A tool for analyz-
ing discrete action protocols. Behavior Research Methods, Instru-
ments, & Computers, 33, 149-158.

Galisson, F. (2000, August). Introduction to computational sequence

analysis. Tutorial presented at the 8th International Conference on
Intelligent Systems for Molecular Biology, San Diego.

Gardner, W. (1995). On the reliability of sequential data: Measure-
ment, meaning, and correction. In J. M. Gottman (Ed.), The analysis
of change (pp. 339-359). Mahwah, NJ: Erlbaum.

Giegerich, R., & Wheeler, D. (1996). Pairwise sequence alignment.
VSNS BioComputing Division, Technische Fakultät, Universität
Bielefeld: Available at www.techfak.uni-bielefeld.de/bcd/Curric/
PrwAli/prwali.html.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences:
Computer science and computational biology. New York: Cambridge
University Press.

Hardy, P., & Waterman, M. S. (1997). The sequence alignment soft-
ware library at USC. Unpublished manuscript, University of Southern
California.

Hirschberg, D. S. (1997). Serial computations of Levenshtein dis-
tances. In A. Apostolico & Z. Galil (Eds.), Pattern matching algo-
rithms (pp. 123-141). New York: Oxford University Press.

Kaye, K. (1980). Estimating false alarms and missed events from
interobserver agreement: A rationale. Psychological Bulletin, 88,
458-468.

Kruskal, J. B. (1999). An overview of sequence comparison. In
D. Sankoff & J. B. Kruskal (Eds.), Time warps, string edits, and mac-
romolecules: The theory and practice of sequence comparison (2nd
ed., pp. 1-44). Stanford, CA: CSLI Publications.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald,
A. F., & Wootton, J. C. (1993). Detecting subtle sequence signals:
A Gibbs sampling strategy for multiple alignment. Science, 262,
208-214.

Levenshtein, V. I. (1965). Binary codes capable of correcting dele-
tions, insertions, and reversals. Doklady Akademii Nauk SSSR, 163,
845-848.

Mannila, H., & Ronkainen, P. (1997). Similarity of event sequences.
In Proceedings of the Fourth International Workshop on Temporal
Representation and Reasoning: TIME’97 (pp. 136-139). Daytona
Beach, FL.

McVicar, D., & Anyadike-Danes, M. (2000). Predicting success-
ful and unsuccessful transitions from school to work using sequence
methods. Belfast, U.K.: Economic Research Institute of Northern
Ireland.

Needleman, S. B., & Wunsch, C. D. (1970). A general method appli-
cable to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48, 443-453.

Paterson, M., & Dančík, V. (1994). Longest common subsequences.
In I. Prívara, B. Rovan, & P. Ruzicka (Eds.), Proceedings of 19th In-
ternational Symposium on Mathematical Foundations of Computer
Science (pp. 127-142). Berlin: Springer.

Sankoff, D., & Kruskal, J. B. (eds.) (1999). Time warps, string edits,
and macromolecules: The theory and practice of sequence compari-
son (2nd ed.). Stanford, CA: CSLI Publications.

Sankoff, D., & Mainville, S. (1999). Common subsequences and
monotone subsequences. In D. Sankoff & J. B. Kruskal (Eds.), Time
warps, string edits, and macromolecules: The theory and practice of
sequence comparison (2nd ed., pp. 363-365). Stanford, CA: CSLI
Publications.

Scherer, S. (2001). Early career patterns: A comparison of Great Brit-
ain and West Germany. European Sociological Review, 17, 119-144.

Waterman, M. S. (1995). Introduction to computational biology: Maps,
sequences and genomes. London: Chapman & Hall.

(Manuscript received September 3, 2005;
revision accepted for publication December 13, 2005.)

http://www.ingentaconnect.com/content/external-references?article=0737-4038()2L.526[aid=7855279]
http://www.ingentaconnect.com/content/external-references?article=0737-4038()2L.526[aid=7855279]
http://www.ingentaconnect.com/content/external-references?article=1432-4350()32L.435[aid=7855278]
http://www.ingentaconnect.com/content/external-references?article=1066-5277()11L.616[aid=7855277]
http://www.ingentaconnect.com/content/external-references?article=1434-6028()7L.293[aid=193412]
http://www.ingentaconnect.com/content/external-references?article=0013-1644()20L.37[aid=20113]
http://www.ingentaconnect.com/content/external-references?article=0013-1644()20L.37[aid=20113]
http://www.ingentaconnect.com/content/external-references?article=0012-365X()26L.17[aid=7855275]
http://www.ingentaconnect.com/content/external-references?article=0743-3808()33L.149[aid=1522818]
http://www.ingentaconnect.com/content/external-references?article=0743-3808()33L.149[aid=1522818]
http://www.ingentaconnect.com/content/external-references?article=0033-2909()88L.458[aid=1507434]
http://www.ingentaconnect.com/content/external-references?article=0033-2909()88L.458[aid=1507434]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()262L.208[aid=192842]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()262L.208[aid=192842]
http://www.ingentaconnect.com/content/external-references?article=0022-2836()48L.443[aid=178368]
http://www.ingentaconnect.com/content/external-references?article=0266-7215()17L.119[aid=7855272]
http://www.techfak.uni-bielefeld.de/bcd/Curric/PrwAli/prwali.html
http://www.techfak.uni-bielefeld.de/bcd/Curric/PrwAli/prwali.html
http://home.fsw.vu.nl/w.dijkstra/sequenceviewer.html
http://home.fsw.vu.nl/w.dijkstra/sequenceviewer.html

