
Investigators who use systematic observation to mea-
sure various aspects of behavior are rightly concerned 
with observer agreement. If the records of 2 observers 
recorded independently do not agree, then the accuracy of 
any scores derived from these records is dubious, and we 
conclude that modification of the coding scheme, further 
observer training, or both, are required. On the other hand, 
when observers’ records substantially agree, we infer that 
our observers are adequately trained and that scores de-
rived from those records will be reliable. In sum, observer 
agreement is regarded as a sine qua non of observational 
research and measurement (Bakeman & Gottman, 1997). 
However, reflecting various recording methods and dif-
ferent models of observer decision making, a variety of 
algorithms exist for assessing observer agreement, some 
of which are more firmly based on well-known statistical 
models than others.

Reflecting the development of computer and digital 
technology, a single data recording (or data logging) ap-
proach is becoming increasingly standard (Jansen, Wiertz, 
Meyer, & Noldus, 2003). Working with digital multime-
dia (video and sound) recordings displayed on computer 
monitors, observers depress keys to note onsets of events 
(live observation or video tapes are other possibilities). 

Offsets may also be explicitly logged, or they could be 
inferred from the onset of a later coded event in the same 
mutually exclusive and exhaustive (ME&E) set. With such 
instrumentation, continuously alert observers (continuous 
sampling) log data in a way that allows frequency, dura-
tion, co-occurrence, and contingency information to be 
derived later that is limited only by the precision with 
which time is recorded (which is either 0.033 . . . or 0.04 
of a second, when working with US NTSC or European 
PAL video, respectively). Two commercially available 
programs that effect such data logging are Mangold In-
ternational’s INTERACT (www.mangold-international 
.com) and Noldus Information Technology’s The Observer 
(www.noldus.com); a third is the James Long Company 
program (www.jameslong.com). (Hereafter, following 
these companies’ practices, we refer to the two programs 
as INTERACT and The Observer, but use lowercase oth-
erwise—e.g., the Interact algorithm.)

The present article uses computer simulation to com-
pare five algorithms for assessing observer agreement 
given timed-event sequential data (TSD; Bakeman & 
Quera, 1995)—that is, continuously sampled, time-logged 
observational data of the sort just described. The five are 
time-unit κ, time-unit κ with tolerance, the Observer al-
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of observer agreement. The decision-making model is 
straightforward: Pairs of observers are presented with 
a discrete entity to code; each makes an independent 
judgment (selects from one of k codes), and a tally is 
entered in the k 3 k agreement matrix. Observers make 
decisions when presented with a discrete entity, and the 
number of tallies represents the number of paired-coding 
decisions made.

What Bakeman and Quera (1995) termed interval se-
quential data (code-interval grid) fit κ’s requirement for 
discrete units, but ESD (code-event grid) satisfies this re-
quirement only when events are presented to coders as 
discrete units. Frequently, however, this is not the case: 
Observers are asked to first segment the stream of behav-
ior into events (i.e., detect the seams between events) and 
then code the segments. When two observers are asked 
to code the same material, because of errors of omission 
and commission as well as simple disagreement, usually 
the records produced contain different numbers of events. 
And, exactly how they align is not always obvious (absent 
a master record giving the “true” state of affairs). This is 
a classic problem in observational research (Bakeman & 
Gottman, 1997), although recently we (Quera et al., 2007) 
proposed a solution for ESD based on algorithms origi-
nally designed for aligning nucleotide sequences; more 
on this later.

For the TSD with which this article is concerned, align-
ment is not a problem—at least when events are located 
on a common time line. We term the universal template 
for representing such data a code-time grid. Each column 
represents a time unit as defined by the precision of data 
recording. For example, if times are recorded or rounded 
to the nearest second, each column represents a second. 
This reflects the fact that time—although continuous in 
theory—is discrete in practice, with discrete units defined 
by the precision used. TSD are not recorded this way, of 
course. Observers do not make checks in the cells of a 
code-time grid; instead, the data-as-recorded typically 
consist of event onset times (and offset times in some 
cases) recorded to a given precision. However, the data-as-
represented for subsequent analysis can be conceptualized 
as a code-time grid (as, e.g., by the GSEQ program; Bake-
man & Quera, 1995), and doing so facilitates subsequent 
analysis (and the writing of general purpose computer 
programs).

The present article emphasizes observer agreement 
with respect to the data collected. When scores are de-
rived from such data (e.g., summary scores, such as rela-
tive frequency, or proportion of time for a given code or 
measures of contingency, such as Yule’s Q or the log odds 
ratio) and subsequently analyzed, their reliability could 
be gauged with standard psychometric methods (e.g., an 
interclass correlation coefficient; Suen, 1988). However, 
both before and during data collection, investigators are 
concerned with observer training and credentialing (i.e., 
meeting an accuracy criterion), and for these purposes, 
methods for characterizing observer agreement for the 
data collected are essential. In the next section, we will 
describe five algorithms for quantifying observer agree-
ment for such data, given TSD.

gorithm, the Interact algorithm, and the Generalized Se-
quential Querier (GSEQ) dynamic programming (DP) 
algorithm, respectively. The first and second algorithms 
are implemented in GSEQ (Version 4.2 and earlier; Bake-
man & Quera, 1995), the first and third in The Observer 
Version 5.0 (Noldus Information Technology, 2003), and 
the first in INTERACT (Mangold, 2006). The fourth is 
implemented in Version 8.4.4 of INTERACT, and the 
fifth is implemented in both Version 5.0 of GSEQ and 
the simulation program described in the present article. 
The GSEQ DP algorithm is an extension of a dynamic 
programming algorithm we developed previously (Quera, 
Bakeman, & Gnisci, 2007) for event sequential data 
(ESD; only sequence but no times recorded). In the next 
section—partly as a way to introduce common concepts 
and terminology—we will comment on different types of 
observational data and how they can be represented, and 
we will describe one standard model of observer decision 
making and observer agreement.

Templates for Event, Interval, and Timed-Event 
Sequential Data

Imagine that we want to define a universal template for 
recording and representing discrete microcoded observa-
tional data. We assume that a set or sets of ME&E codes 
have been defined (discrete, nominal-scale measurement) 
and that these codes are intended to be assigned to events 
as they unfold over time (microcoded), as opposed to, 
for example, periodically sampling something like heart 
rate (interval-scale measurement), or rating from 1 to 7 
(ordinal-scale measurement) something like positive 
emotional tone over a relatively lengthy observational ses-
sion (macrocoded). Defining a standard template for rep-
resenting observational data is useful because it clarifies 
analytic possibilities and facilitates subsequent analysis. 
A simple grid would work. Each row would represent a 
different code. Columns would represent either succes-
sive events (a code-event grid) or successive time intervals 
(a code-interval grid), and data recording could consist 
simply of checking cells in this grid.

For the moment, imagine that either the events or the 
time intervals to be coded are defined for the coders prior 
to coding. For example, transcripts have been prepared, 
and observers are asked to code successive turns of talk—
perhaps on several dimensions (e.g., Adamson & Bake-
man, 2006)—or, observers are asked to note whether any 
of several mother and infant behaviors occurred in succes-
sive 15-sec intervals (see, e.g., Bakeman, Adamson, Kon-
ner, & Barr, 1990). In these two examples, observers were 
presented with discrete entities to code. In particular, they 
were not asked to segment (i.e., unitize) the stream of be-
havior into coding units before assigning codes to those 
units; the coding units were, in effect, prepackaged. In 
cases like these, when two observers independently code 
the same sequence of (predefined) events or intervals, the 
resulting agreement–disagreement tallies clearly fit the 
observer decision-making model assumed by Cohen’s κ 
(1960), which characterizes agreement with respect to a 
set of ME&E codes while correcting for chance agree-
ment, and is probably the most frequently used statistic 
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the time units tallied are arbitrary in a way that the event 
or interval units described earlier are not.

One variant of κ time-unit we call time-unit κ with toler-
ance (κ tolerance). Exact second-by-second agreement can 
seem overly stringent (Hollenbeck, 1978). Imagine, for 
example, given a time unit of 1 sec, we define a toler-
ance of 2 sec. We then examine each successive time unit 
for the first observer and tally an agreement if there is 
a match with any time unit for the second observer that 
falls within the stated tolerance (e.g., a 2-sec tolerance 
defines a 5-sec window, two units before and two after 
the current time unit). The effect is to move some tallies 
of the agreement matrix from off-diagonal to on-diagonal 
cells, thereby giving credit for near misses and increasing 
the magnitude of κ (κ tolerance is implemented in GSEQ). 
On the basis of our simulations, we know that the value 
of κ tolerance varies slightly, depending on which of the two 
observers is regarded as the first; hence, for the present 
article, we computed κ tolerance as the mean of its two pos-
sible values.

In sum, it seems almost certain that the observer deci-
sion model assumed by time-based κs overestimates—
perhaps greatly—the number of decisions the observers 
made, but in fact there is no way to know the true number 
of observer decisions.

Event-based κs. A second approach to computing ob-
server agreement for TSD focuses on events and not on 
time units; hence, the tallies in the agreement matrix are 
considerably fewer in number than they are with a time-
unit κ. The underlying assumption is that instead of mak-
ing decisions continuously, moment by moment, observers 
are making decisions only when behavior changes. Thus, 
whereas time-unit algorithms almost certainly overesti-
mate, event-based algorithms almost certainly underesti-
mate the “true” number of observer decisions. However, 
in both cases, the actual number of observer decisions is 
unknowable, which, as was noted earlier, is not the case 
for the classic Cohen model.

With event-based algorithms, before tallies can be 
placed in an agreement matrix, the events in the two ob-
servers’ timed-event sequential records need to be linked. 
Doing so presents problems similar to those encountered 
when attempting to link two event sequential records, 
as was discussed earlier. In the present articles we de-
scribe three algorithms that attempt such a linking. One, 
a refinement of an algorithm described by Haccou and 
Meelis (1992), is implemented in Version 5 of The Ob-
server. Jansen et al. (2003) referred to it as “labeling in-
stances of behavior with a frequency-based comparison” 
(p. 395), where frequency-based indicates events. A sec-
ond is a similar algorithm implemented in Version 8.4.4 
of INTERACT (P. T. Mangold, personal communication, 
November 14, 2007; C. Spies, personal communication, 
February 1, 2008), and the third is an extension to the 
solution for event sequences cited earlier (Quera et al., 
2007), which is implemented in Version 5.0 of GSEQ. 
Later, we will describe results of simulations comparing 
all five algorithms—the two that are time-unit based and 
the three that are event based—and we will present figures 
showing how the three event-based algorithms link events 

Observer Agreement Algorithms for TSD
The five algorithms described in the present article all 

enter tallies in either a k 3 k or a k 1 1 3 k 1 1 agree-
ment matrix, and all produce a summary statistic using a 
standard κ computation (with adjustments for structural 0 
if needed). However, the observer decision-making models 
on which these algorithms are based differ from the classic 
Cohen model described earlier. For the classic model, the 
number of observer decisions is the same as the number of 
tallies in the agreement matrix; as described subsequently, 
such one-to-one correspondence cannot be assumed for 
the other models. None satisfy the assumption of indepen-
dent tallies required by the classic Cohen’s κ; in particular, 
the standard error formula for Cohen’s κ, even though it is 
rarely used, would not be appropriate for these other κs. 
Still, the magnitude of the κ produced, along with the 
agreement matrix itself, is a useful tool for observer train-
ing, and a κ value is often cited by investigators as being 
indicative of acceptable observer agreement. Thus—and 
this is the motivation for the present article—investigators 
should understand differences among these various κs.

Time-unit κs with and without tolerance. The code-
time grid suggests one straightforward approach to com-
puting observer agreement for TSD: The time units can 
be tallied, and what we call a time-unit κ (κ time-unit) can 
be computed (Bakeman & Quera, 1995). The agreement 
matrix is constructed with rows and columns labeled with 
the codes of the ME&E set under consideration, as usual. 
Then, successive columns of the linked code-time grids 
for the 2 observers are examined. For each column, a tally 
is added to the cell at the intersection of the row defined by 
the first observer’s code and at the column defined by the 
second observer’s code. Thus, the total number of tallies 
is the number of time units (e.g., 300, if seconds were the 
unit and 5 min were coded), and, as usual, good agreement 
is indicated by a preponderance of tallies on the upper-left 
to lower-right diagonal.

The procedure just described seems formally identi-
cal to that used with a code-event or a code-interval grid, 
but with a key difference: When, for example, intervals 
are externally defined (e.g., Konner’s [1978] click in the 
ear at 15-sec intervals), observers are aware of making a 
coding decision for each successive interval. In contrast, 
when recording TSD, observers are continuously look-
ing for the seams between events, but how often they are 
making decisions is arguable—even unknowable. One de-
cision per seam seems too few; the observers are continu-
ously alert. However, one per time unit—as assumed by 
the κ time-unit procedure just described—seems too many. 
Moreover, the number of tallies is affected by the preci-
sion of the time unit chosen, although multiplying all cells 
in an agreement matrix by the same factor does not affect 
the value of κ (Bakeman & Gottman, 1997), and investi-
gators almost always focus on the magnitude of κ (which 
is unaffected by the number of time units) and not its sta-
tistical significance (which is). Several programs compute 
κ time-unit (e.g., GSEQ, INTERACT, The Observer). Jansen 
et al. (2003) referred to it as “labeling instances of behav-
ior with a duration-based comparison” (p. 395), where 
duration-based indicates time, but the fact remains that 
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On the first pass (overlaps), two events are linked if an 
identical event in the other observer’s record overlaps P% 
of the current event’s duration, even if the other observer’s 
event is already linked. The second through fourth passes 
are the same as in The Observer. On the fifth pass (other 
events), any remaining unlinked events are linked if an 
event in the other observer’s record overlaps P% of the 
current event’s duration. On the sixth pass, any remaining 
unlinked events are linked to a nil event of the other ob-
server (i.e., are regarded as omission–commission errors; 
see the following paragraph).

The GSEQ dynamic programming algorithm. 
When coders are asked to detect seams in the stream of 
behavior (i.e., to unitize), they may be too sensitive and 
will therefore make errors of commission. Or, they may 
not be sensitive enough and will thus make errors of omis-
sion. As a result, records from 2 observers coding the 
same material usually contain different numbers of events. 
Therefore, when comparing 2 observers, some codes in 
1 observer’s record may be left unlinked to codes in the 
other observer’s record (omission errors from the point of 
view of the former observer, and commission errors from 
the point of view of the latter one), and vice versa. The 
Observer algorithm does not allow for errors of commis-
sion and omission; instead, it links all events—even ones 
that are quite distant in time from each other. As a result, 
The Observer algorithm likely overestimates agreement. 
In contrast, both the Interact and GSEQ DP algorithms 
allow for errors of omission and commission.

As was noted earlier, the GSEQ DP algorithm for timed-
event sequences described in the present article is an ex-
tension of the one developed for event sequences (Quera 
et al., 2007). The algorithm described by Quera et al. for 
ESD is an application of the classic Needleman–Wunsch 
(1970) algorithm for aligning sequences of nucleotides, 
whereas the GSEQ DP algorithm for TSD described in 
the present article is based on Mannila and Ronkainen 
(1997), who proposed how the Needleman–Wunsch algo-
rithm could be modified for computing similarity between 
two timed-event sequences, with additional modifications 
by us. The Needleman–Wunsch algorithm belongs to a 
broad class of methods known as dynamic programming, 
in which the solution for a specific subproblem can be 
derived from the solution for another subproblem immedi-
ately preceding it. It can be demonstrated that the method 
guarantees the optimal solution (i.e., it finds the alignment 
with the highest possible number of agreements between 
the sequences; Sankoff & Kruskal, 1999, p. 48) without 
being exhaustive; that is, it does not need to explore all 
possible alignments (Galisson, 2000).

The algorithm determines the optimal global alignment 
between two event sequences. It was adapted from se-
quence alignment techniques that are common in molecu-
lar biology to compare and classify nucleotide sequences 
(see, e.g., Sankoff & Kruskal, 1999). Given two event se-
quences, many different global alignments are possible. 
The task is to find an optimal alignment that is guided by 
costs that the investigator supplies for various transfor-
mations, as will be described shortly. The algorithm pro-
ceeds step by step, recording the transformations that are 

for a simple example. First, however, we will describe 
each of the three event-based algorithms.

The Observer algorithm. The Observer algorithm 
consists of five steps, or passes (Jansen et al., 2003; Noldus 
Information Technology, 2003, see pp. 450–452). The pur-
pose is to link each event in each observer’s record with one 
or more events in the other observer’s record. When a pair of 
events is linked, the appropriate tally (either an agreement 
or disagreement) is added to the agreement matrix. Users 
may define a tolerance; our description of the algorithm 
in the present article assumes a code-time grid representa-
tion with a precision of 1 sec, a stated tolerance (e.g., 2 sec, 
which is The Observer’s default), and records of 2 observers 
with the same start and end times. On each pass, the algo-
rithm considers any yet unlinked events in turn (called the 
current event)—ordered from earliest to latest on the basis 
of their onset times—no matter which observer logged it. 
Processing stops when all events are linked.

On the first pass (perfect matches), two events are 
linked if an identical event in the other observer’s record 
overlaps any of the current event’s duration, and if the 
other observer’s event is yet unlinked.

On the second pass (tolerance matches), two events are 
linked if the difference in onset times between the current 
event and an identical event in the other observer’s record 
falls within the tolerance window (i.e., is less than or equal 
to the stated tolerance), and if the other observer’s event 
is yet unlinked.

On the third pass (unlinked events within tolerance), 
two events are linked if the difference in onset times be-
tween the current event and an event in the other observer’s 
record falls within the tolerance window, and if the other 
observer’s event is yet unlinked. If multiple events fall 
within the tolerance window, then the first is selected.

On the fourth pass (any events within tolerance), two 
events are linked if the difference in onset times between 
the current event and an event in the other observer’s re-
cord falls within the tolerance window, even if the other 
observer’s event is already linked. If multiple events fall 
within the tolerance window, then the last is selected.

Finally, on the fifth pass (other events), any unlinked 
events left are linked to the other observer’s nearest 
event—again, even if that event is already linked. In sum, 
because events may be linked to more than one event, 
the number of tallies in the agreement matrix—which, in 
theory, reflects the number of times the pair of observ-
ers made a decision—may be greater than the maximum 
number of events coded by either observer.

The Interact algorithm. The Interact algorithm is 
a modification of that of The Observer (P. T. Mangold, 
personal communication, November 14, 2007; C. Spies, 
personal communication, February 2, 2008); thus, most 
statements made in the previous section describing the 
Observer algorithm apply. The Interact algorithm makes 
six passes through the data; like The Observer algorithm, 
on each pass, it considers the onset of each unlinked event 
in turn, ordered from earliest to latest, on the basis of their 
onset times. Users define a tolerance window and a per-
centage overlap (P). Processing stops after the sixth pass, 
or possibly earlier if all events are linked.
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previous one. Consequently, the algorithm need not ex-
haustively consider all possible alignments, but only a 
small fraction of them.

Let m and n be the number of codes in the initial S1 
and S2. The algorithm proceeds by filling in three m 3 n 
matrices, guided by a fourth k 1 1 3 k 1 1 matrix. The 
distance matrix (D) accumulates generalized Levenshtein 
distances; the length matrix (L) accumulates common 
subsequent lengths (i.e., number of matched codes); and 
the pointer matrix (P) indicates the transformations used 
to find the optimal global alignment (again, for details, 
see Quera et al., 2007). The transformation selected at 
each step is guided by the distance matrix and the cost or 
weight matrix (W). Confronted with an apparent pairing 
of Ci in S1 and Cj in S2, a substitution transformation could 
be selected (first observer coded Ci but the second Cj), or a 
deletion and an insertion (second observer missed Ci, but 
the first missed Cj). The transformation selected depends 
on W, as defined by the investigator, and on the accumu-
lated distance between the sequences up to the two codes 
currently being checked. W is indexed 0 . . . k, with rows 
and columns 1 . . . k indicating codes 1 . . . k, respectively. 
Column 0 indicates deletion and Row 0 insertion costs 
(omissions and commissions); thus, w20 is the cost of de-
leting C2, and w02 is the cost of inserting C2. Otherwise, 
diagonal elements (wii) represent an identity transforma-
tion (an agreement; its costs are always 0; i.e., when agree-
ment exists, an identity transformation is always selected), 
and off-diagonal elements represent disagreements; thus, 
wij indicates the cost of substituting Ci with Cj.

For event sequences, Quera et  al. (2007) recom-
mended setting agreement, disagreement, and omission 
and commission costs to 0, 1, and 2, respectively, thus 
giving omission–commission errors twice the weight of 
disagreements, reasoning that this best reflects what in-
vestigators expect of observer agreement. (In contrast, if 
costs for disagreements were more than twice the cost of 
omission–commissions costs, a substitution transforma-
tion would never be selected; i.e., all apparent disagree-
ments would be resolved with insertions and deletions, 
which seems unrealistic.) The contribution of Mannila 
and Ronkainen (1997) was to suggest that in order to align 
timed event sequences, the occurrence or onset times of 
the events can be taken into account when substitution 
costs are calculated. In addition, we define a tolerance. 
Discrepancies between onset times that are less than or 
equal to the tolerance are considered perfect matches (i.e., 
their cost is 0), otherwise, they are assigned weights that 
are directly proportional to the discrepancies.

In sum, for the GSEQ DP algorithm, the cost matrix 
is defined dynamically and depends on onset times. Let 
r 5 1 . . . m and c 5 1 . . . n; then, s1r and s2c identify a pair 
of codes in S1 and S2, respectively. Let h be a tolerance win-
dow. Then, the cost of substituting s1r with s2c is set to

w(s1r,s2c) 5 V·( | t1r 2 t2c | 2 h)	 if | t1r 2 t2c | . h

w(s1r,s2c) 5 0 	 if | t1r 2 t2c |  h,

where t1r and t2c are the onset times of events s1r and s2c 
and V is a constant, which should be V # min[w(s1r,0) 1 

required to convert one sequence (S1) into the other (S2; 
bolding indicates a vector, as is the case here, or a matrix). 
The goal of the algorithm is to determine an optimal align-
ment—that is, the alignment that requires the minimum 
possible transformations and yields both the most matches 
and the lowest distance (defined later) between the two 
sequences (for details, see Quera et al., 2007). This al-
gorithm is considerably more complex than the two just 
described; consequently, its description is much longer.

When aligning the sequences, the algorithm either links 
a code (i.e., an event) in one sequence to a code in the other 
(this represents an agreement if events are identical, and 
a disagreement otherwise), or it links an event in one se-
quence to a nil code, which the algorithm inserts in the 
other (this represents an omission–commission error) on 
the basis of the costs that the investigator defines (as will 
be discussed shortly), and that is mindful of criteria that 
maximize similarities between the two original sequences. 
The transformations result in two modified sequences of 
identical length, which are aligned so that successive pairs 
each contribute a tally to the agreement matrix. Let k be the 
number of unique codes in the ME&E scheme under con-
sideration, Ci a particular code (indexed 0 . . . k), and A the 
k 1 1 3 k 1 1 agreement matrix (indexed 0 . . . k) used to 
tally agreements and disagreements. The first row and col-
umn, indexed 0, are used to tally events coded by 1 observer 
but not the other (i.e., omission–commission errors).

At each step, three transformations are possible:
1. A substitution, which can be either an agreement or 

a disagreement (a code from S1 is linked with an identical 
code from S2, or a code from S1 is linked with a different 
code from S2).

2. A deletion (a code from S1 is linked with a nil code 
from S2; i.e., a hyphen is inserted in S2).

3. An insertion (a nil code from S1 is linked with a code 
from S2; i.e., a hyphen is inserted in S1. Hyphens indicate 
the nil code and are tallied in the first row or column of the 
agreement matrix, depending on whether they are inserted 
in S1 or S2, respectively).

From the point of view of the first observer, a deletion 
is an error of omission, and an insertion is an error of 
commission on the part of the second observer. Note that 
the resulting agreement matrix A contains a logical (or 
structural) 0 at cell (0,0) because linked nil codes (i.e., 
simultaneous omissions) are not possible, according to 
the algorithm. As a consequence, the expected frequencies 
required by the κ computation cannot be estimated with 
the usual closed-form formula for κ, but require an itera-
tive proportional fitting (IPF) algorithm instead (see, e.g., 
Bakeman & Robinson, 1994).

The algorithm considers pairs of codes in turn. As pairs 
of codes are being aligned, a measure of the distance be-
tween the two sequences up to that point is computed. At 
each step of the dynamic programming algorithm, the 
transformation selected (out of the three possible trans-
formations) is the one that causes the smallest increment 
in distance; consequently, two thirds of all possible align-
ments up to the two codes being checked are discarded, 
and at the next step, a new optimal alignment is obtained 
that incorporates the alignment that was obtained at the 
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Procedure for Generating Sessions to Code
When generating master sessions, five characteristics can be 

specified: the number of codes (k) in the ME&E set under consid-
eration, the variability of their relative frequencies and durations 
(low, medium, or high), the mean duration of coded events, the 
mean variability of that duration, and the length of the session (time 
units are assumed to be seconds). The variable k can vary from 2 to 
20—a range in which the number of codes in ME&E sets used by 
researchers typically fall.

Codes are rarely equiprobable with equivalent mean durations; 
thus, we defined three sets of circumstances that are intended to 
reflect the kind of variability encountered in practice. For each value 
of k, we defined three possible patterns: low, medium, and high vari-
ability. Let Ci be a code (where i 5 1  .  .  . k) and Ri its relative 
frequency—that is, the probability that an event will be coded Ci. 
These probabilities are used when generating master records (and 
simulating observers). Define R0 5 1/k; if codes were equiprobable, 
then all Ri 5 R0. For low, medium, and high variability, respectively, 
we set R1 5 0.75R0, 0.50R0, and 0.25R0; and Rk 5 1.25R0, 1.50R0, 
and 1.75R0. We let other Ri assume appropriate intermediate values. 
For example, for k 5 5 the probabilities used to generate sessions 
for the five codes varied from .15 to .25, .10 to .30, and .05 to .35 for 
low, medium, and high variability, respectively.

When generating data for a session, OASTES selects succes-
sive events using a probabilistic random process. The user speci-
fies whether a selected event can be the same as the previous one 
(cannot is the default); otherwise, the probabilities used to select 
events are the relative frequencies (Ris, as was defined in the pre-
vious paragraph) associated with the current variability level and 
value of k. Each event’s duration is likewise determined using a 
probabilistic random process, which will be described in the fol-
lowing paragraph. By default, the base mean duration (M0) is set to 
20 sec (it can vary from 10 to 100), but the mean duration for each 
code (Mi) varies depending on the variability level and value of k. 
Specifically, Mi 5 M0/Rik. Per this definition, less probable codes 
have longer average durations; thus, other things being equal, about 
the same number of events will be generated for sessions of differ-
ent variability levels. Consequently—and this is why we defined 
variability in this way—results for sessions of different variability 
levels can be directly compared. For example, for k 5 5 and M0 5 
20, the mean durations used to generate sessions for the five codes 
vary from 26.7 to 16.0, 40.0 to 13.3, and 80 to 11.4 sec for low, 
medium, and high variability, respectively.

The duration for each event is randomly selected from a normal 
distribution whose mean is the Mi for the selected code, as was de-
fined in the previous paragraph, and whose standard deviation is set 
by default to .20Mi (e.g., if Mi 5 20, then Si 5 4; it can vary from 
0% to 50%). Any durations that are less than 3 are set to 3 sec, a 
minimum time that is often used for coding events (see, e.g., Adam-
son, Bakeman, & Deckner, 2004). OASTES stops generating data 
for a session when the accumulated time exceeds a specified total 
duration (can vary from 60 to 3,600 sec; given a mean event dura-
tion of 20 sec, about 45 events will be generated for a 900-sec, or 
15-min, session).

Procedure for Simulating Observer Coding Behavior
Accuracy (A) is the key parameter when simulating an observer 

coding a session, but the parameters defined in the previous sec-
tion are also used (the Ri, Mi, and Si for the value of k and level 
of variability for the session being coded). OASTES generates an 
observer’s record by selecting successive events and their durations 
from the master record using a random probabilistic process; the 
user specifies whether or not a selected event can be the same as 
the previous one (cannot is the default), and coding stops when the 
accumulated time exceeds that of the master record.

Successive events are selected by first noting the concurrent code 
in the master record (defined as the code for the time unit or col-
umn in the master record corresponding to the first yet uncoded 
column in the observer’s code-time grid, or the next code in the 

w(0,s2c)] for all codes (otherwise, a deletion plus an inser-
tion would always be better than a substitution). We can 
use the same cost for applying a tolerance window both 
when s1r 5 s2c and when s1r  s2c; that way, substitution 
of one code for a different one is possible only if the dif-
ference between their onset times is less than the toler-
ance. We propose setting insertion and deletion (indel) 
costs to 1 and V to 2. For example, if we set h 5 5, then 
a substitution is preferable over an indel if the difference 
between the onset times is less than or equal to 5, and an 
indel is preferable if it is greater than 5. For other details 
as to how the D, L, and P matrices are filled in, how Lev-
enshtein distance is defined, and how the final alignment 
is determined by a backward trace through the P matrix, 
see Quera et al. (2007).

We made one additional modification to the GSEQ DP 
algorithm. Imagine that the first observer recorded Code A 
for 20 sec and then Code B for 20 sec, whereas the sec-
ond observer recorded Code B for the entire 40 sec. Left 
unmodified, the dynamic programming algorithm would 
tally this as two disagreements (assuming h , 20): a sub-
stitution that increments cell a12 in the agreement matrix, 
followed by a deletion that increments cell a20 (first ob-
server coded a B that the second observer did not). In fact, 
an examination of the timeline suggests a different sce-
nario. True, when the first observer began by coding A and 
the second by B, they disagreed. But, after 20 sec, the first 
observer “decided” to code B, and the second “decided” 
to continue coding B; this is an agreement that time-unit 
κ tally would capture, and, it seems reasonable to think, 
one that other algorithms should as well. Consequently—
during the backward trace, and before tallying a potential 
deletion or insertion—in a manner similar to Interact’s 
Pass 1, the GSEQ DP algorithm asks whether an identical 
event in the other observer’s record overlaps P% of the 
proposed insertion or deletion event’s duration. If so, an 
agreement is tallied instead of an omission or commission 
disagreement. In such cases, the GSEQ DP algorithm may 
link one event to two others.

Method

The OASTES Simulation Program
To compare the five algorithms just described, we developed a 

computer program that models the behavior of two independent 
coders. The program, which we call OASTES (for Observer Agree-
ment for Simulated Timed Event Sequences), was programmed in 
Pascal (using Borland Delphi Professional Version 7.0). As will be 
described shortly, various characteristics can be specified. For each 
unique combination of characteristics, OASTES generates one or 
more records of events for a hypothetical session. These are called 
“master records” because they contain a presumed “correct” se-
quence of events and their durations. For each master record, the 
coding behavior of one to three pairs of independent observers is 
simulated. The user specifies the number of pairs (may be from 1 
to 3) and a percentage accuracy for the observers in each pair (may 
be from 50% to 100%). For each pair, with each representing a dif-
ferent level of accuracy, κs per the five algorithms are computed. 
For each combination of characteristics, as many master records are 
generated as the user requests (the number of replications may vary 
from 1 to 10,000). Then, for stability, values of κ for each algorithm 
are averaged over the number of replications specified.
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circumstances simulated, time-based κs were similar and 
event-based κs were slightly higher, when adjacent codes 
could not be the same (.011 for The Observer, .004 for the 
Interact and GSEQ DP algorithms).

An Example
To illustrate the five agreement algorithms for TSD, we 

prepared a κ table (i.e., an agreement or confusion ma-
trix) and computed κ per each algorithm, given the data 
shown in Table 1. For simplicity, the example assumes five 
codes and 2 observers who independently coded a 5-min 

master record if the current one ends within 3 sec). OASTES gives 
the observer an A% chance of selecting the concurrent code in the 
master record. If it is not selected, then the probabilities used to 
select events are the Ri-defined probabilities for the master records’ 
variability levels and values of k.

The duration for each event is randomly selected from a normal dis-
tribution whose mean is the time remaining before a new code begins 
in the master record, and whose standard deviation is smaller for more 
accurate observers, with the additional constraint that no duration can 
be less than 3 sec. Specifically, the standard deviation for the selected 
code is multiplied by √1 2 A; this factor was based on a pilot study 
that showed it gave more reasonable results than did, for example, 
1 2 A. We reasoned that accurate observers would be likely to detect 
an end to the current event in the master record, but that how closely 
they detected it would be affected by their accuracy.

Results

We ran the simulation program specifying three values 
of k (5, 10, and 15), three levels of variability (low, me-
dium, and high), three levels of observer accuracy (75%, 
85%, and 95%), a base mean duration of 20 sec with an 
SD of 4 sec, a total duration of 900 sec (15 min), and 
a tolerance of 62 sec for κ tolerance and of 5 sec for The 
Observer, Interact, and GSEQ DP algorithms (reasoning 
that this provided an equivalent window as the 62 sec for 
time-unit κ). Overlap was 80% for the Interact and GSEQ 
DP algorithms.

Simulation Results
Agreement statistics, averaged over 1,000 simulations, 

for k 5 5, 10, and 15, are shown in Figure 1. For observ-
ers who are 75%, 85%, and 95% accurate individually, we 
would expect their joint accuracy to be the product: 56%, 
72%, and 90%. The average percentage agreements for time 
intervals over the circumstances simulated were 55%, 70%, 
and 87%. Thus, from a time-based perspective at least, the 
simulation program delivered about the percentage agree-
ment expected. Moreover, average values of κ over the cir-
cumstances simulated for κ time-unit and κ tolerance, and The 
Observer, Interact, and GSEQ DP algorithms ranged from 
.47 to .86, .52 to 91, .52 to .91, .44 to .90, and .43 to .88, 
respectively, for 75% to 95% observer accuracy. Thus, over 
all algorithms, values of κ were generally in the range that 
might be expected for the accuracies simulated.

Generally, κ tolerance and The Observer κs tended to be 
higher, κ time-unit and GSEQ DP values lower, and Interact 
κs intermediate: Mean values over the 27 circumstances 
simulated for κ time-unit and κ tolerance, and The Observer, 
Interact, and GSEQ DP algorithms, were .66, .72, .72, 
.68, and .65, respectively. With 95% accuracy, differences 
among the algorithms were relatively muted (.85–.90). 
With 85% accuracy, differences were greater (.64–.71), 
and with 75% accuracy, differences were greater still 
(.45–.55). Over all algorithms, the number of codes (k) 
had little effect. Variability had little effect on time-based 
κs, but for the event-based algorithms, higher variability 
was associated with lower values of κ (see Figure 1).

Finally, we simulated the results when adjacent codes 
both could and could not be equal (an option in OASTES), 
but doing so generated little difference in results. Over the 
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Figure 1. Values for time-unit κ and time-unit κ with 2-sec tol-
erance, as computed per The Observer, Interact, and GSEQ dy-
namic programming algorithms for k 5 5, 10, and 15 codes when 
observer accuracy is 75%, 85%, and 95%, and when the variabil-
ity of code frequency and duration is low, moderate, and high.



144        Bakeman, Quera, and Gnisci

as well (see Figure 3), GSEQ DP indicated omission–
commission errors that both The Observer and Interact 
regarded as disagreements, although they sometimes dif-
fered as to what the disagreements were. To our knowl-
edge, only the INTERACT program prepares linkage 
figures like those shown in Figure 3.

In sum, the GSEQ DP κ table (Figure 2, bottom) in-
dicates possible omission–commission errors, which are 
absent from The Observer table and differ from those in 
the Interact table, but which can be useful when train-
ing observers. On the other hand, both The Observer and 
GSEQ DP found an agreement that Interact—with an 
80% overlap criterion—regarded as two disagreements. 
Figure 3 illustrates differences in how the three event-
based algorithms linked, or did not link, events for the data 
in Table 1—differences that are reflected in the Figure 2 
κ tables. In Figure 3, a solid line connecting two events 
indicates agreement; a dotted line connecting two events 
indicates disagreement; a dotted line connected to the 
top of the figure indicates an event coded by Observer 1 
but missed by Observer 2; and a dotted line connected to 
the bottom of the figure indicates an event coded by Ob-
server 2 but missed by Observer 1.

Discussion

In an earlier article, and in the context of event se-
quential data, Bakeman, Quera, McArthur, and Robinson 
(1997) argued that no one value of κ can be regarded as 
universally acceptable. The present article supports that 
earlier conclusion for the context of TSD. For example, 
bigger values of κ are not, for that reason, necessarily 
better. Still, given TSD, and the need to train observers 
and provide them with useful feedback, which of these 
algorithms should an investigator favor? Of the two time-
based algorithms, we prefer κ tolerance, because we think 
it reasonable for most behaviors of interest to behavioral 
investigators not to count minor errors of timing on the 
order of just a few seconds; moreover, the event-based al-

(300-sec) session. We deliberately selected example data 
that represent less than stellar agreement; doing so better 
demonstrates how the algorithms work (the example data 
were selected from pairs of observer records generated by 
the OASTES program with k 5 5, moderate variability of 
code frequencies and durations, and observer accuracy 
of 75%). The tolerance for κ tolerance was 2 sec. For The 
Observer, Interact, and GSEQ DP algorithms, it was 5 sec 
(for the reasons given earlier), and the overlap for Inter-
act and GSEQ DP was 80%. IPF was used to compute 
expected values for Interact and GSEQ DP κs because of 
the structural 0 at cell (0,0).

Consistent with the simulation results, the value for 
κ time-unit was .08 less than the value for κ tolerance. As shown 
in Figure 2 (top), given a 2-sec tolerance, 20 of the 300 
1-sec tallies moved to the diagonal, giving a value of .45 
for κ with tolerance, as compared with .37 without. Still, 
the cells with the largest tallies in the κ tables changed 
little, if any. This indicated, for example, that the first ob-
server coded at least 54 sec as Code C when the second 
coded them as Code A.

The agreement and disagreement linkages effected 
by each of the three event-based algorithms are shown 
graphically in Figure 3. As shown in Figures 2 and 3, 
The Observer found 9 agreements and 8 disagreements; 
comparable numbers for Interact and GSEQ DP were 
8 and 11, and 9 and 10, respectively. The Observer and 
GSEQ DP found the same 9 agreements. Unlike the Ob-
server and GSEQ DP, Interact did not link the first ob-
server’s Code D at 32–44 sec with the second’s Code D at 
26–41 sec inclusive (hereafter Code D1,4 and Code D2,3, 
where the first subscript indicates observer and the sec-
ond, serial position), because neither overlapped the 
other 80% or more. Interact left these two events un-
linked until Pass 6; it also left Code E2,14 unlinked until 
Pass 6, whereas The Observer linked it to Code C1,16 
(a Code C–E disagreement), and GSEQ DP regarded it 
as a commission–omission error (the second observer 
coded it, but the first observer did not). For other events 

Table 1 
Agreement Records for Two Observers for a 5-min Example Session

Observer 1 Observer 2

#  Code  Onset  Offset  Dura  #  Code  Onset  Offset  Dura

  1 A   1   4   4   1 D   1   14 14
  2 D   5   12   8   2 E   15   25 11
  3 E   13   31 19   3 D   26   41 16
  4 D   32   44 13   4 B   42   68 27
  5 B   45   63 19   5 C   69   76   8
  6 C   64   82 19   6 A   77 112 36
  7 E   83   92 10   7 C 113 116   4
  8 C   93 109 17   8 A 117 157 41
  9 E 110 123 14   9 C 158 174 17
10 C 124 146 23 10 B 175 201 27
11 D 147 157 11 11 D 202 215 14
12 B 158 198 41 12 C 216 238 23
13 D 199 217 19 13 A 239 274 36
14 C 218 236 19 14 E 275 290 16
15 A 237 284 48 15 A 291 300 10
16 C 285 300 16

Note—Onset, offset, and duration (dura) times are in seconds. Offset times are 
inclusive.
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circumstances vary, which is why we are making OASTES 
available to investigators who wish to consider parameter 
values other than those we chose for investigation.

In addition to providing relatively conservative values, 
we think the GSEQ DP algorithm has another advantage. 
The Needleman–Wunsch algorithm, on which the GSEQ 
DP algorithm is based, is conceptually sophisticated and 
has a firm basis in the literature. Its conceptual sophisti-
cation is reflected in an apparent paradox: Although it re-
quired considerably more prose to describe, its program-
ming required fewer lines of computer code.

One dilemma remains. A time-unit κ (with a tally for 
each time unit) likely overestimates how often observers 
are making decisions, whereas event-based algorithms 
(with a tally for each agreement and disagreement, and 
perhaps each omission and commission) likely underesti-
mate the number of decisions observers make. Sometimes 
(perhaps often) observers decide that an event is continu-
ing and not changing to another event; such agreements 

gorithms all include some sort of tolerance. Additionally, 
eliminating such errors from the agreement matrix leaves 
those disagreements that are arguably more serious, and 
that can profitably serve as a basis for further observer 
training.

Of the three event-based algorithms, we believe the 
GSEQ dynamic programming algorithm is more accu-
rate. The Observer algorithm does not allow for errors 
of omission and commission. It regards two events, even 
when quite distant in time, as a single disagreement in-
stead of two separate errors—one of commission and one 
of omission—and so is likely to overestimate agreement. 
Thus, it is not surprising that The Observer algorithm 
produced higher κ values than did either the Interact or 
the GSEQ DP algorithm in our simulations. We should 
stress, however, that our results are limited to the circum-
stances we simulated, and other values for the simulation 
parameters could give different results. We set simulation 
parameters to values that made sense to us, but individual 
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Figure 2. Agreement matrices and κ values for the timed-event sequential data in Table 1 per the 
five observer agreement algorithms.
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Simulation Program Availability
Users who wish to explore values other than those re-

ported here may download a zip file containing a descrip-
tion of the OASTES program and the program itself at no 
cost from the authors’ Web sites (www.gsu.edu/~psyrab/
BakemanPrograms.htm and www.ub.es/comporta/
vquera). The program was written in Pascal using Bor-
land Delphi Professional Version 7.0 and assumes a Win-
dows 95 or later environment. OASTES lets users set vari-
ous parameter values, display intermediate results, and 
even read in their own data, if desired.
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