QUESTION: Is it a problem if I use Factor Analysis on dichotomous data in scale development?

> By R. L. Brown, Ph.D. Medical Research Consulting

The Model.

The measurement model used for scale development in structural covariance analyses consists of a set of (p) regression equations linking the (p) measured (Y) variables with (m) scales or factors (latent variables η). The system of equations may be written as the following, using standard terminology;

$$y_1 = \lambda_{11}\eta_1 + \lambda_{12}\eta_2 + \dots + \lambda_{1m}\eta_m + \varepsilon_1$$

$$y_2 = \lambda_{21}\eta_1 + \lambda_{22}\eta_2 + \dots + \lambda_{2m}\eta_m + \varepsilon_2$$

$$y_p = \lambda_{p1}\eta_1 + \lambda_{p2}\eta_2 + \dots + \lambda_{pm}\eta_m + \varepsilon_p$$

Or in matrix notation as;

 $y = \Lambda \eta + \varepsilon$

Assumption: Unlimited normally distributed continuous variables

Estimate Pearson/Phi Correlations

 $F = (1/2) \operatorname{tr}[(S - \Sigma) W]^2$

Weight matrix $W = \Sigma^{-1}$ for ML

Ho: $S = \Sigma$

What if the variables are not unlimited continuous, but dichotomous, and possibly asymmetrical?

Estimate tetrachoric correlations not Pearson/Phi

$$F(\theta) = (s - \sigma)' W^{-1}(s - \sigma)$$

Weight matrix **W** = ******* for WLS

Simulation Study

Table 1. Population Estimates for the two scale model.

	SCALE 1	SCALE 2	ERROR
	λís	λ′s	δ's
Y1	0.87	0.00	0.24
Y2	0.83	0.00	0.32
Y3	0.77	0.00	0.41
Y4	0.66	0.00	0.56
Y5	0.00	0.74	0.46
Yб	0.00	0.93	0.14
	SCATE 1	SCALE 2	
	JUALE I		
COALE 1	ψs 100	ψs	
SCALE I	1.00	1.00	
SCALE Z	0.58	1.00	

Table 2. Population Correlation Matrix based on theoretical two dimensional model.

	Y1	Y2	Y3	Y4	Y5	Y6
Y1	1.00					
Y2	0.72	1.00				
Y3	0.68	0.63	1.00			
Y4	0.56	0.56	0.52	1.00		
Y5	0.39	0.34	0.32	0.30	1.00	
Yб	0.49	0.44	0.38	0.37	0.68	1.00

Simulation of asymmetry in dichotomous variables

Assess Issue of

- Different correlational estimates (Pearson vs tetrachoric)
- Different estimation procedures (ML vs WLS)
- Levels of asymmetry

Table 2. Population Correlation Matrix based on theoretical two dimensional model.

	Y1	Y2	Y3	Y4	Y5	Y6
Y1	1.00					
Y2	0.72	1.00				
Y3	0.68	0.63	1.00			
Y4	0.56	0.56	0.52	1.00		
Y5	0.39	0.34	0.32	0.30	1.00	
Yб	0.49	0.44	0.38	0.37	0.68	1.00

100 correlation matrices were simulated for each asymmetrical condition

Percent bias in the correlation = $((r - \rho)/\rho) * 100$

Distribution 55

	Pearson (Phi) Correlations					
	Var 1	Var2	Var 3	Var 4	Var5	Varб
Var 1	1.00	18.61	27.35	31.60	30.76	35.30
Var 2	.586	1.00	28.09	28.57	23.82	33.40
Var 3	.494	.453	1.00	30.57	55.00	39.47
Var4	.383	.400	.361	1.00	28.66	35.40
Var5	.270	.259	.144	.214	1.00	39.41
Varб	.317	.293	.230	.239	.412	1.00

ML

		Tetrachoric Correlations						
	Varó	Var5	Var4	Var3	Var 2	Var 1		
	3.06	12.82	5.71	6.32	13.05	1.00	Var 1	
	5.68	22.94	8.03	6.66	1.00	.814	Var2	
WI C	1.05	23.75	7.50	1.00	.672	.723	Var3	
VV LD	4.86	17.00	1.00	.559	.605	.592	Var4	
	7.94	1.00	.351	.244	.418	.440	Var5	
	1.00	.626	.388	.376	.465	.505	Varб	

Distribution 37

		1	Pearson (J	Phi) Corre	lations		
	Var 1	Var2	Var3	Var 4	Var5	Varб	
Var 1	1.00	38.05	34.26	41.60	39.23	42.44	
Var2	.446	1.00	20.95	28.57	52.94	41.81	
Var3	.447	.498	1.00	44.03	57.81	53.42	
Var 4	.327	.400	.291	1.00	79.33	45.94	
Var5	.237	.160	.135	.062	1.00	42.50	
Varб	.282	.256	.177	.200	.391	1.00	

		Tetra	ichoric Co	melations	;	
	Var 1	Var2	Var3	Var4	Var5	Varб
Var 1	1.00	4.16	2.94	2.50	7.94	1.42
Var 2	.690	1.00	19.52	13.75	12.64	0.68
Var 3	.700	.753	1.00	2.88	17.81	12.89
Var4	.546	.637	.505	1.00	59.00	2.97
Var5	.421	.297	.263	.123	1.00	7.50
Varб	.483	.443	.331	.359	.629	1.00

Distribution 19

			Pearson (J	Phi) Corre	lations		
	Var 1	Var2	Var 3	Var 4	Var5	Varб	
Var 1	1.00	33.88	61.61	53.92	35.12	25.10	
Var2	.476	1.00	59.04	31.78	26.76	58.40	
Var3	.261	.258	1.00	13.84	33.75	47.36	
Var4	.258	.382	.448	1.00	16.33	42.16	
Var5	.253	.249	.212	.251	1.00	39.26	
Varб	.367	.183	.200	.214	.413	1.00	

		Tetra	achoric Co	orrelations	;	
	Var 1	Var2	Var3	Var 4	Var5	Var6
Var 1	1.00	1.94	3.08	0.53	1.53	5.51
Var2	.706	1.00	3.01	5.17	10.88	8.63
Var3	.659	.611	1.00	0.19	2.81	8.68
Var4	.563	.589	.521	1.00	15.66	20.00
Var5	.384	.377	.329	.347	1.00	0.44
Var6	.517	.478	.413	.444	.683	1.00

Percent bias in the parameters = $((\theta^{\varepsilon} - \theta)/\theta) * 100$

	Parameter Estimate	Percent Bias	Parameter Estimate	Percent Bias
λ11	0.754	13.333	0.8894	2.2299
λ ₂₁	0.700	15.663	0.8310	0.1205
λ31	0.630	18.182	0.7596	1.3506
λ41	0.506	23.333	0.6438	2.4545
λ ₅₂	0.640	13.514	0.7672	3.6757
λ62	0.770	17.204	0.9114	2.0000
φ ₁₂	0.532	8.276	0.5718	1.4138
δι	0.430	79.167	0.2072	13.6667
δ2	0.508	58.750	0.3078	3.8125
δ3	0.604	47.317	0.4214	2.7805
δ4	0.742	32.500	0.5834	4.1786
δ5	0.590	28.261	0.4108	10.6957
- δ ₆	0.408	191.429	0.1682	20.1429
<u>γ2</u>	12.686	45.315	9.4274	7.9885

Tetrachoric Correlation Method

Table 4c. Scale estimates and percent of bias in the estimates for the DI55 distribution.

Pearson (Phi) Correlation Method

	Parameter	Percent Bias	Parameter	Percent Bias
	Estimate		Estimate	
λ11	0.748	14.023	0.8922	2.5517
λ ₂₁	0.696	16.145	0.8316	0.1928
λ31	0.616	20.000	0.7576	1.6104
λ41	0.536	18.788	0.6898	4.5152
λ ₅₂	0.626	15.405	0.7618	2.9459
λ62	0.756	18.710	0.9048	2.7097
ф ₁₂	0.522	10.000	0.5726	1.2759
δ1	0.442	84.167	0.2022	15.7500
δ2	0.518	61.875	0.3066	4.1875
δ3	0.622	51.707	0.4254	3.7561
δ4	0.708	26.429	0.5226	6.6786
δς	0.608	32.174	0.4168	9.3913
ර්ර	0.428	205.714	0.1794	28.1429
γ2	13.602	55.808	8.5392	2.1856

Tetrachoric Correlation Method

Table4b. Scale estimates and percent of bias in the estimates for the DI37 distribution.

Pearson (Phi) Correlation Method

	Parameter	Percent Bias	Parameter	Percent Bias
	Estimate		Estimate	
λ11	0.632	27.356	0.83360	4.1839
λ ₂₁	0.666	19.759	0.85660	3.2048
λ ₃₁	0.572	25.714	0.77698	0.9065
λ41	0.470	28.788	0.67260	1.9091
λ ₅₂	0.512	30.811	0.70180	5.1622
λ62	0.760	18.280	0.96460	3.7204
ф ₁₂	0.476	17.931	0.53260	8.1724
δι	0.590	145.833	0.30020	25.0833
δ2	0.554	73.125	0.26480	17.2500
δ3	0.670	63.415	0.39100	4.6341
δ4	0.778	38.929	0.54560	2.5714
δs	0.734	59.565	0.50160	9.0435
δε	0.412	194.286	0.18200	30.0000
¥2	15.860	81.672	7.43640	14.8179

Table 4a. Scale estimates and percent of bias in the estimates for the DI19 distribution.

Pearson (Phi) Correlation Method

Tetrachoric Correlation Method

