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Section 1

Introduction to SEM



Definitions of Structural Equation 
Models/Modeling

 “Structural equation modeling (SEM) does not 
designate a single statistical technique but instead refers 
to a family of related procedures.  Other terms such as 
covariance structure analysis, covariance structural 
modeling, or analysis of covariance structures are 
essentially interchangeable.  Another term…is causal 
modeling, which is used mainly in association with the 
technique of path analysis.  This expression may be 
somewhat dated, however, as it seems to appear less 
often in the literature nowadays.”  (Kline, 2005)



History of SEM

 Sewall Wright and Path Analysis
 Duncan and Path Analysis
 Econometrics
 Joreskog and LISREL
 Bentler and EQS
 Muthen and Mplus



Sewall Wright

 Geneticist
 Principle of Path Analysis provides algorithm 

for decomposing correlations of 2 variables into 
structural relations among a set of variables

 Created the path diagram
 Applied path analysis to genetics, psychology, 

and economics



Duncan

 Applied path analysis methods to the area of 
social stratification (occupational attainment)

 Key papers by Duncan & Hodge (1964) and 
Blau & Duncan (1967) 

 Developed one of the first texts on path analysis



Econometrics

 Goldberger added the importance of standard 
errors and links to statistical inference

 Showed how ordinary least squares estimates of 
parameters in overidentified systems of 
equations were more efficient than averages of 
multiple estimates of parameters

 Combined psychometric and econometric 
components



Indirect Effects

 Duncan (1966, 1975)—applying tracing rules
 Reduced-form equations (Alwin & Hauser, 

1975)
 Asymptotic distribution of indirect effects 

(Sobel, 1982)



Joreskög

 Maximum Likelihood estimator was an 
improvement over 2 and 3 stage least squares 
methods

 Joreskög made structural equation modeling 
more accessible (if only slightly!) with the 
introduction of LISREL, a computer program

 Added model fit indices
 Added multiple-group models



Bentler

 Refined fit indices
 Added specific effects and brought SEM into 

the field of psychology, which otherwise was 
later than economics and sociology in its 
introduction to SEM



Muthén

 Added latent growth curve analysis
 Added hierarchical (multi-level) modeling



Other Developments

 Models for dichotomous and ordinal variables
 Various combinations of hierarchical (multi-

level) modeling, latent growth curve analysis, 
multiple-group analyses

 Use of interaction terms



Quips and Quotes (Wolfle, 2003)

 “Here I was doing elaborate, cross-lagged, multiple-partial 
canonical correlations involving dozens of variables, and 
that eminent sociologist [Paul Lazarsfeld] was still messing 
around with chi square tables!  What I did not appreciate 
was that his little analyses were generally more informative 
than my elaborate ones, because he had the ‘right’ variables.  
He knew his subject matter.  He was aware of the major 
alternative explanations that had to be guarded against and 
took that into account when he decided upon the four or 
five variables that were crucial to include.  His work 
represented the state of the art in model building, while my 
work represented the state of the art in number crunching.”  
(Cooley, 1978)



Quips and Quotes (cont.)

 “All models are wrong, but some are useful.” 
(Box, 1979)

 “Analysis of covariance structures…is explicitly 
aimed at complex testing of theory, and superbly 
combines methods hitherto considered and used 
separately.  It also makes possible the rigorous 
testing of theories that have until now been very 
difficult to test adequately.”  (Kerlinger, 1977)



Quips and Quotes (cont.)

 “The government are very keen on amassing 
statistics.  They collect them, add them, raise 
them to the nth power, take the cube root and 
prepare wonderful diagrams.  But you must 
never forget that every one of these figures 
come in the first instance from the village 
watchman, who just puts down what he damn 
pleases.”  (Sir J. Stamp, 1929)
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Defining SEM

 “a melding of factor analysis and          path 
analysis into one comprehensive statistical 
methodology” (Kaplan, 2000)

 Simultaneous equation modeling
 Does implied covariance matrix match up with 

observed covariance matrix
 Degree to which they match represents 

goodness of fit



Types of SEM Models

 Path Analysis Models
 Confirmatory factory analysis models
 Structural regression models
 Latent change models



How SEM and traditional 
approaches are different

 Multiple equations can be estimated simultaneously
 Non-recursive models are possible
 Correlations among disturbances are possible
 Formal specification of a model is required
 Measurement and structural relations are separated, 

with relations among latent variables rather than 
measured variables

 Assessing of model fit is not as straightforward



Why Use SEM?

 Test full theoretical model 
 ELM as argued by Stiff & Mongeau (1993)

 Simultaneous (full information) estimation
 consistent with SEM statistical theory
 Analyze systems of equations
 Assumptions about data distribution
 But…error spread throughout model

 Latent Variables
 Divorce measurement error
 True systematic relationship between variables



Ways to Increase Confidence in 
Causal Explanations

 Conduct experiment if possible
 If not:

 Control for additional potential confounding (independent or 
mediating) variables

 Control for measurement error (as in SEM)
 Make sure statistical power is adequate to detect effects or 

test model
 Use theory, carefully conceptualize variables, and carefully 

select variables for inclusion
 Compare models rather than merely assessing one model
 Collect data longitudinally if possible



Section 2:
Review of Correlation

and Regression



Factors Affecting the size of r

 Arithmetic operations: generally no effect
 Distributions of X and Y
 Reliability of variables
 Restriction of range



Definitions of semi-partial and 
partial correlation coefficients

 Correlation between Y and X1 where effects of 
X2 have been removed from X1 but not from Y 
is semi-partial correlation (a or b in the Venn 
Diagram)

 Squared partial correlation answers the question, 
How much of Y that is not estimated by the 
other IVs is estimated by this variable? a/(a+e) 
or b/(b+e)



Components of Explained Variance 
in 2-independent variable Case



A

B C

D

Partial = B, Part = B & D for purple 
predictor. 

Partial = C, Part = C & D for yellow 
predictor.



Interpretation of Part Correlations

1. Part correlation (semi partial) squared is the 
unique amount of total variance explained. 

2. Sum of part correlations squared does NOT 
equal R2 because of overlapping variance.

3. The part correlation2 does tell you how much 
R2 would decrease if that predictor was 
eliminated.



Ways to account for shared 
variance

 A Partial regression coefficient is the correlation 
between a specific predictor and the criterion when 
statistical control has occurred for all other variables in 
the analysis, meaning all the variance for the other 
predictors is completely removed.

 A Part (semi partial) regression coefficient is the 
correlation between a specific predictor and the 
criterion when all other predictors have been partialed 
out of that predictor, but not out of the criterion.



Possible Relationships
among Variables



Suppression

 The relationship between the independent or causal 
variables is hiding or suppressing their real relationships 
with Y, which would be larger or possibly of opposite 
sign were they not correlated.

 The inclusion of the suppressor in the regression 
equation removes the unwanted variance in X1 in effect 
enhanced the relationship between X1 and Y.



Effects of Specification Error

 Specification Error when variables are omitted 
from the regression equation

 Effects can be inflated or diminished regression 
coefficients of the variables in the model, and a 
reduced R2



Multicollinearity

 Existence of substantial correlation among a set 
of independent variables.

 Problems of interpretation and unstable partial 
regression coefficients



Section 3

Data Screening: Fixing 
Distributional Problems, Missing 

Data, Measurement



Multicollinearity

 Existence of substantial correlation among a set of 
independent variables.

 Problems of interpretation and unstable partial 
regression coefficients

 Tolerance = 1 – R2 of X with all other X
 VIF = 1/Tolerance
 VIF < 8.0 not a bad indicator
 How to fix:

 Delete one or more variables
 Combine several variables



Standardized vs. Unstandardized 
Regression Coefficients

 Standardized coefficients can be compared across 
variables within a model

 Standardized coefficients reflect not only the strength 
of the relationship but also variances and covariances of 
variables included in the model as well of variance of 
variables not included in the model and subsumed 
under the error term

 As a result, standardized coefficients are sample-
specific and cannot be used to generalize across settings 
and populations



Standardized vs. Unstandardized 
Regression Coefficients (cont.)

 Unstandardized coefficients, however, remain fairly 
stable despite differences in variances and covariances 
of variables in different settings or populations

 A recommendation: Use std. coeff. to compare effects 
within a given population, but unstd. coeff. to compare 
effects of given variables across populations.

 In practice, when units are not meaningful, behavioral 
scientists outside of sociology and economics use 
standardized coefficients in both cases.



Fixing Distributional Problems

 Analyses assume normality of individual variables and 
multivariate normality, linearity, and homoscedasticity 
of relationships

 Normality: similar to normal distribution
 Multivariate normality: residuals of prediction are 

normally and independently distributed
 Homoscedasticity: Variances of residuals do not vary 

across values of X



Transformations:
Ladder of Re-Expressions

 Power
 Inverses (roots)
 Logarithms
 Reciprocals



Suggested Transformations

Distributional Problem Transformation

Mod. Pos. Skew Square root

Substantial pos. skew Log (x+c)*

Severe pos. skew, L-shaped 1/(x+c)*

Mod. Negative skew Square root (k-x)

Substantial neg. skew Log (k-x)

Severe. Neg. skew, J shaped 1/(k-x)



Dealing with Outliers

 Reasons for univariate outliers:
 Data entry errors--correct
 Failure to specify missing values correctly--correct
 Outlier is not a member of the intended population--delete
 Case is from the intended population but distribution has 

more extreme values than a normal distribution—modify 
value

 3.29 or more SD above or below the mean a reasonable 
dividing line, but with large sample sizes may need to be less 
inclusive



Multivariate outliers

 Cases with unusual patterns of scores
 Discrepant or mismatched cases
 Mahalanobis distance: distance in SD units 

between set of scores for individual case and 
sample means for all variables



Linearity and Homoscedasticity

 Either transforming variable(s) or including 
polynomial function of variables in regression 
may correct linearity problems

 Correcting for normality of one or more 
variables, or transforming one or more variables, 
or collapsing among categories may correct 
heteroscedasticity.  “Not fatal,” but weakens 
results.  



Missing Data

 How much is too much?
 Depends on sample size
 20%?

 Why a problem?
 Reduce power
 May introduce bias in sample and results



Types of Missing Data Patterns

 Missing at random (MAR)—missing observations on 
some variable X differ from observed scores on that 
variable only by chance.  Probabilities of missingness 
may depend on observed data but not missing data.

 Missing completely at random (MCAR)—in addition to 
MAR, presence vs. absence of data on X is unrelated to 
other variables.  Probabilities of missingness also not 
dependent on observed ata.

 Missing not at random (MNAR)



Methods of Reducing Missing 
Data

 Case Deletion
 Substituting Means on Valid Cases
 Substituting estimates based on regression
 Multiple Imputation

 Each missing value is replaced by list of simlulated values.  Each of m 
datasets is analyzed by a complete-data method.  Results combined by 
averaging results with overall estimates and standard errors.

 Maximum Likelihood (EM) method:
 Fill in the missing data with a best guess under current estimate of 

unknown parameters, then reestimate from observed and filled-in data



Checklist for Screening Data

 Inspect univariate descriptive statistics
 Evaluate amount/distribution of missing data
 Check pairwise plots for nonlinearity and 

heteroscedasticity
 Identify and deal with nonnormal variables
 Identify and deal with multivariate outliers
 Evaluate variables for multicollinearity
 Assess reliability and validity of measures



Section 4

Overview of SEM 
concepts, path diagrams, 

programs



Definitions

 Exogenous variable—Independent variables not presumed to be caused by 
variables in the model

 Endogenous variables— variables presumed to be caused by other variables 
in the model

 Latent variable: unobserved variable implied by the covariances among two or 
more indicators, free of random error (due to measurement) and uniqueness 
associated with indicators, measure of theoretical construct

 Measurement model prescribes components of latent variables
 Structural model prescribes relations among latent variables and/or observed 

variables not linked to latent variables
 Recursive models assume that all causal effects are represented as 

unidirectional and no disturbance correlations among endogenous variables 
with direct effects between them

 Non-recursive models are those with feedback loops



Definitions (cont.)

 Model Specification—Formally stating a model via statements about a set of 
parameters

 Model Identification—Can a single unique value for each and every free 
parameter be obtained from the observed data: just identified, over-identified, 
under-identified

 Evaluation of Fit—Assessment of the extent to which the overall model fits 
or provides a reasonable estimate of the observed data

 Fixed (not estimated, typically set = 0), Free (estimated from the data), and 
Constrained Parameters (typically set of parameters set to be equal)

 Model Modification—adjusting a specified and estimated model by freeing or 
fixing new parameters

 Direct (presumed causal relationship between 2 variables), indirect (presumed 
causal relationship via other intervening or mediating variables), and total 
effects (sum of direct and indirect effects)



Path Diagrams

 Ovals for latent variables
 Rectangles for observed variables
 Arrows point toward observed variables to 

indicate measurement error
 Arrows point toward latent variables to indicate 

residuals or disturbances



Path Diagrams
 Straight lines for putative causal relations
 Curved lines to indicate correlations

SS

Hours 
Viewing 

TV
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Exposure

CSQ



Confirmatory Factor Analysis

 The concept and practice of what most of us know as 
factor analysis is now considered exploratory factor 
analysis, that is, with no or few preconceived notions 
about what the factor pattern will look like.  There are 
typically no tests of significance for EFA

 Confirmatory factory analysis, on the other hand, is where 
we have a theoretically or empirically based conception 
of the structure of measured variables and factors and 
enables us to test the adequacy of a particular 
“measurement model” to the data



Structural Regression Models

 Inclusion of measured and latent variables
 Assessment both of relationship between measured and 

latent variables (measurement model) and putative 
causal relationships among latent variables (structural 
model)

 Controls for measurement error, correlations due to 
methods, correlations among residuals and separates 
these from structural coefficients



Path Diagrams

 Ovals for latent variables
 Rectangles for observed variables
 Straight lines for putative causal relations
 Curved lines to indicate correlations
 Arrows pointing toward observed variables to 

indicate measurement error
 Arrows pointing toward latent variables to 

indicate residuals or disturbances



Steps in SEM

 Specify the model
 Determine identification of the model
 Select measures and collect, prepare and screen the data
 Use a computer program to estimate the model
 Re-specify the model if necessary
 Describe the analysis accurately and completely
 Replicate the results*
 Apply the results*



Programs

 AMOS—assess impact of one parameter on model; 
editing/debugging functions; bootstrapped estimates; MAR 
estimates

 EQS—data editor; wizard to write syntax; various estimates for 
nonnormal data; model-based bootstrapping and handling 
randomly missing data 

 LISREL—data entry to analysis.  PRELIS screens data files; 
wizard to write syntax; can easily analyze categorical/ordinal 
variables; hierarchical data can also be used

 MPLUS—latent growth models; wizard for batch analysis; no 
model diagram input/output; MAR data; complex sampling 
designs; hierarchical and multi-level models



Section 5

Equations for path analysis, 
decomposing correlations, 

mediation



Path Equations

 Components of Path Model:
 Exogenous Variables
 Correlations among exogenous variables
 Structural paths
 Disturbances/residuals/error



Relationship between regression 
coefficients and path coefficients

 When residuals are uncorrelated with variables 
in the equation in which it appears, nor with any 
of the variables preceding it in the model, the 
solution for the path coefficients takes the form 
of OLS solutions for the standardized regression 
coefficients.



The Tracing Rule

 If one causes the other, then always start with the one that is 
the effect.  If they are not directly causally related, then the 
starting point is arbitrary.  But once a start variable is selected, 
always start there.

 Start against an arrow (go from effect to cause).  Remember, 
the goal at this point is to go from the start variable to the 
other variable.

 Each particular tracing of paths between the two variables 
can go through only one noncausal (curved, double-headed) 
path (relevant only when there are three or more exogenous 
variables and two or more curved, double-headed arrows).



The Tracing Rule (cont.)

 For each particular tracing of paths, any intermediate 
variable can be included only once.

 The tracing can go back against paths (from effect to 
cause) for as far as possible, but, regardless of how far 
back, once the tracing goes forward causally (i.e., with 
an arrow from cause to effect), it cannot turn back 
against an arrow.



Mediation vs. Moderation

 Mediation: Intervening variables
 Moderation: Interaction among independent or 

interventing/mediating variables



How to Test for Mediation

 X  Y
 X  M
 M  Y
 When M is added to X as predictor of Y, X is no longer 

significantly predictive of Y (Baron & Kenny)
 Assess effect ratio: a X b / c [indirect effect divided by direct 

effect]



Direct, Indirect, and Total Effects

 Total Effect = Direct + Indirect Effects
 Total Effect = Direct Effects + Indirect Effects 

+ Spurious Causes + Unanalyzed due to 
correlated causes



Identification

 A model is identified if:
 It is theoretically possible to derive a unique estimate 

of each parameter
 The number of equations is equal to the number of 

parameters to be estimated
 It is fully recursive



Overidentification

 A model is overidentified if:
 A model has fewer parameters than observations
 There are more equations than are necessary for the 

purpose of estimating parameters



Underidentification

 A model is underidentified or not identified if:
 It is not theoretically possible to derive a unique 

estimate of each parameter
 There is insufficient information for the purpose of 

obtaining a determinate solution of parameters.
 There are an infinite number of solutions may be 

obtained



Necessary but not Sufficient 
Conditions for Identification: 

Counting Rule
 Counting rule: Number of estimated parameters 

cannot be greater than the number of sample 
variances and covariances.  Where the number 
of observed variables = p, this is given by 
[p x (p+1)] / 2



Necessary but not Sufficient 
Conditions for Identification: Order 

Condition
 If m = # of endogenous variables in the model 

and k = # of exogenous variables in the model, 
and ke = # exogenous variables in the model 
excluded from the structural equation model 
being tested and mi = number of endogenous 
variables in the model included in the equation 
being tested (including the one being explained 
on the left-hand side), the following requirement 
must be satisfied: ke > mi-1



Necessary but not Sufficient 
Conditions for Identification: Rank 

Condition
 For nonrecursive models, each variable in a 

feedback loop must have a unique pattern of 
direct effects on it from variables outside the 
loop.

 For recursive models, an analogous condition 
must apply which requires a very complex 
algorithm or matrix algebra.



Guiding Principles for 
Identification

 A fully recursive model (one in which all the 
variables are interconnected) is just identified.

 A model must have some scale for unmeasured 
variables 



Where are Identification Problems 
More Likely?

 Models with large numbers of coefficients 
relative to the number of input covariances

 Reciprocal effects and causal loops
 When variance of conceptual level variable and 

all factor loadings linking that concept to 
indicators are free

 Models containing many similar concepts or 
many error covariances 



How to Avoid 
Underidentification

 Use only recursive models
 Add extra constraints by adding indicators
 Fixed whatever structural coefficients are expected to be 0, based 

on theory, especially reciprocal effects, where possible
 Fix measurement error variances based on known data collection 

procedures
 Given a clear time order, reciprocal effects shouldn’t be 

estimated
 If the literature suggests the size of certain effects, one can fix 

the coefficient of that effect to that constant



How to Test for 
Underidentification

 If ML solution repeatedly converges to same set of final 
estimates given different start values, suggests 
identification

 If concerned about the identification of a particular 
equation/coefficient, run the model once with the 
coefficient free, once at a value thought to be 
“minimally yet substantially different” than the 
estimated value.  If the fit of the model is worse, it 
suggests identification.



What to do if a Model is 
Underidentified

 Simplify the model
 Add indicators
 Eliminate reciprocal effects
 Eliminate correlations among residuals



Introduction to

AMOS, 
Part 1



AMOS Advantages

 Easy to use for visual SEM ( Structural 
Equation Modeling). 

 Easy to modify, view the model
 Publication –quality graphics



AMOS Components

 AMOS Graphics
 draw SEM graphs
 runs SEM models using graphs

 AMOS Basic
 runs SEM models using syntax



Starting AMOS Graphics

Start  Programs  Amos 5 Amos Graphics



Reading Data into AMOS

 File Data Files
 The following dialog appears:



Reading Data into AMOS

 Click on File Name to specify the 
name of the data file
Currently AMOS reads the following 

data file formats:
 Access 
 dBase 3 – 5 
 Microsft Excel 3, 4, 5, and 97 
 FoxPro 2.0, 2.5 and 2.6 
 Lotus wk1, wk3, and wk4 
 SPSS *.sav files, versions 7.0.2 through 13.0            
(both raw data and matrix formats)



Reading Data into AMOS

 Example USED for this workshop: 
 Condom use and what predictors affect it

 DATASET:  
AMOS_data_valid_condom.sav



Drawing in AMOS
 In Amos Graphics, a model can be specified 

by drawing a diagram on the screen
1. To draw an observed variable, click 

"Diagram" on the top menu, and 
click "Draw Observed." Move the 
cursor to the place where you want 
to place an observed variable and 
click your mouse. Drag the box in 
order to adjust the size of the box. 
You can also use in the tool 
box to draw observed variables.

2. Unobserved variables can be drawn 
similarly. Click "Diagram" and 

"Draw Unobserved." Unobserved 
variables are shown as circles. 
You may also use in the toolbox 
to draw unobserved variables.



Drawing in AMOS

 To draw a path, Click “Diagram” on the top menu and click 
“Draw Path”.

 Instead of using the top menu, you may use the Tool Box 
buttons to draw arrows (      and        ). 



Drawing in AMOS
 To draw Error Term to the observed and unobserved 

variables. 
 Use “Unique Variable” button in the Tool Box. Click      and 

then click a box or a circle to which you want to add errors 
or a unique variables.(When you use "Unique Variable" button, the 
path coefficient will be automatically constrained to 1.) 



1

1 1

Drawing in AMOS

 Let us draw:



Naming the variables in AMOS

 double click on  the objects in the path diagram. 
The Object Properties dialog box appears. 

• OR

Click on the Text tab and 
enter the name of the 
variable in the Variable name
field:



Naming the variables in AMOS

 Example: Name the variables 

ISSUEB1

SXPYRC1

eSXPYRC1

1

SEX1

eiss

FRBEHB1

efr1

1 1

IDM



Constraining a parameter in 
AMOS

 The scale of the latent variable or variance of the latent 
variable has to be fixed to 1.

Double click on the 
arrow between EXPYA2
and SXPYRA2. 

The Object Properties
dialog appears. 

Click on the Parameters
tab and enter the value  
“1” in the  Regression 
weight field:



Improving the appearance 
of the path diagram

 You can change the appearance of your path diagram by 
moving objects around

 To move an object, click on the Move icon on the toolbar. You 
will notice that the picture of a little moving truck appears 
below your mouse pointer when you move into the drawing 
area. This lets you know the Move function is active. 

 Then click and hold down your left mouse button on the object 
you wish to move. With the mouse button still depressed, move 
the object to where you want it, and let go of your mouse 
button. Amos Graphics will automatically redraw all connecting 
arrows.



Improving the appearance of the 
path diagram

 To change the size and shape of an object, first press the 
Change the shape of objects icon on the toolbar.

 You will notice that the word “shape” appears under 
the mouse pointer to let you know the Shape function is 
active. 

 Click and hold down your left mouse button on the 
object you wish to re-shape. Change the shape of the 
object to your liking and release the mouse button.

 Change the shape of objects also works on two-headed 
arrows. Follow the same procedure to change the 
direction or arc of any double-headed arrow.



Improving the appearance of the 
path diagram
 If you make a mistake, there are always three icons 

on the toolbar to quickly bail you out: the Erase
and Undo functions.

 To erase an object, simply click on the Erase icon and 
then click on the object you wish to erase.

 To undo your last drawing activity, click on the Undo
icon and your last activity disappears.

 Each time you click Undo, your previous activity 
will be removed.

 If you change your mind, click on Redo to restore a 
change.



Performing the 
analysis  in AMOS

 View/Set Analysis 
Properties and  click on the 
Output tab. 

 There is also an Analysis 
Properties icon you can click 
on the toolbar. Either way, 
the Output tab gives you the 
following options:



Performing the analysis  in 
AMOS

 For our example, check the Minimization history, Standardized 
estimates, and Squared multiple correlations boxes. (We are doing 
this because these are so commonly used in analysis).

 To run AMOS, click on the Calculate estimates icon 
on the toolbar. 
 AMOS will want to save this problem to a file.
 if you have given it no filename, the Save As dialog box will 

appear. Give the problem a file name; let us say, 
tutorial1:



Results 
 When AMOS has completed the calculations, 

you have two options for viewing the output:
 text output, 
 graphics output.

 For text output, click the View Text ( or F10)
icon on the toolbar. 

 Here is a portion of the text output for this 
problem:



The model is recursive.    Sample size = 893
Chi-square=12.88 Degrees of Freedom =3

Maximum Likelihood Estimates
Estimate S.E. C.R. P

FRBEHB1 <--- SEX1 -.28 .09 -2.98 .00
ISSUEB1 <--- SEX1 .30 .08 3.79 ***
FRBEHB1 <--- IDM -.38 .11 -3.29 ***
ISSUEB1 <--- IDM -.57 .10 -5.94 ***
SXPYRC1 <--- ISSUEB1 .16 .05 3.42 ***
SXPYRC1 <--- FRBEHB1 .49 .04 12.21 ***

Standardized Regression Weights: (Group number 1 - Default model)
Estimate

FRBEHB1 <--- SEX1 -.10
ISSUEB1 <--- SEX1 .12
FRBEHB1 <--- IDM -.11
ISSUEB1 <--- IDM -.19
SXPYRC1 <--- ISSUEB1 .11
SXPYRC1 <--- FRBEHB1 .38

Results for Condom Use Model(see handout)



Results for Condom Use Model

Covariances: (Group number 1 - Default model)

Estimate S.E. C.R. P Label

SEX1 <--> IDM -.02 .01 -2.48 .01

Correlations: (Group number 1 - Default model)

Estimate

SEX1 <--> IDM -.08



Viewing the graphics output in 
AMOS

• To view the graphics output, click 
the   View output icon next to the 
drawing area.  

• Chose to view either unstandardized
or (if you selected this option) 
standardized estimates by click one or 
the other in the Parameter Formats
panel next to your drawing area:
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ISSUEB1

.15

SXPYRC1

eSXPYRC1

.11

SEX1

eiss

.02

FRBEHB1

efr1 .38

-.10
.12

IDM

-.11
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-.08

Viewing the graphics output in  AMOS

Unstandardized Standardized

ISSUEB1

SXPYRC1

2.80

eSXPYRC1

1

.16

.25

SEX1

1.36

eiss

FRBEHB1

1.94

efr1

1 1

.49

-.28
.30

.17

IDM

-.38
-.57

-.02

0.15 is the squared multiple 
correlation between 
Condom use and 
ALL OTHER  variables



How to read   the 
Output in AMOS

See the handout_1



Section 7

Putting it All Together



Section 6

Model Testing and Fit Indices, 
Statistical Power



Model Specification

 Use theory to determine variables and 
relationships to test

 Fix, free, and constrain parameters as 
appropriate



Estimation Methods

 Maximum Likelihood—estimates maximize the likelihood that the data 
(observed covariances) were drawn from this population.  Most forms are 
simultaneous.  The fitting function is related to discrepancies between 
observed covariances and those predicted by the model.  Typically iterative, 
deriving an initial solution then improves is through various calculations.

 Generalized and Unweighted Least Squares-- based on least squares criterion 
(rather than discrepancy function) but estimate all parameters simultaneously.

 2-Stage and 3-Stage Least Squares—can be used to estimate non-recursive 
models, but estimate only one equation at a time.  Applies multiple regression 
in two stages, replacing problematic variables (those correlated to 
disturbances) with a newly created predictor (instrumental variable that has 
direct effect on problematic variable but not on the endogenous variable).



Does the model “fit”?

 Model fit = sample data are consistent with the 
implied model

 The smaller the discrepancy between the implied 
model and the sample data, the better the fit.

 Model fit is Achilles’ heel of SEM
 Many fit indexes
 None are fallible (though some are better than 

others) 



Measures of Model Fit

 2 = N-1 * minimization criterion.  Just-identified model has = 0, no df.  As chi-
square increases, fit becomes worse.  Badness of fit index.   Tests difference in fit 
between given overidentified model and just-identified version of it.

 RMSEA—parsimony adjusted index to correct for model complexity.  Approximates 
non-central chi-square distribution, which does not require a true null hypothesis, i.e., 
not a perfect model. Noncentrality parameter assesses the degree of falseness of the 
null hypothesis. Badness of fit index, with 0 best and higher values worse.  Amount of 
error of approximation per model df.  RMSEA < .05 close fit, .05-.08 reasonable, >
.10 poor fit

 CFI—Assess fit of model compared to baseline model, typically independence or null 
model, which assumes zero population covariances among the observed variables

 AIC—used to select among nonhierarhical models



Model Fit

2 Goodness of Fit test
 Historically used
 Desire a nonsignificant p-value, i.e., p>.05
 Adversely affected by sample size

(N-1)*minimization function

 Badness of fit index
 Tests difference in fit between overidentified model 

and its just-identified version.
 Mixed opinions on its value in reporting.



Model Fit

CFI
 Fit determined by comparing implied model to a 

baseline model which assumes zero population 
covariances among the observed variables

 Initially, Bentler CFI > .90
 Hu & Bentler (1998, 1999) CFI > .95.



Model Fit
RMSEA
 Root Mean Squared Error of Approximation
 Adjusts fit index to correct for model complexity
 Based on noncentrality parameter which assesses the degree 

of falseness of the null hypothesis. 
 Badness of fit index; 0 best & higher values worse. 
 Amount of error of approximation per model df.
 RMSEA < .05 close fit
 .05-.08 reasonable and > .10 poor fit
 ALWAYS REPORT CONFIDENCE INTERVAL!



Model Fit

 Many other fit indexes
 Ideally

 Nonsignificant 2 Goodness of Fit test
 CFI > .95
 RMSEA > .08

 IF model fits, then look at paths



Model Fit & Respecification

What if the model does NOT fit?
 Model trimming and building

 LaGrange Multiplier test (add parameters)
 Wald test (drop parameters)

 Empirical vs. theoretical respecification
 What justification do you have to respecify?

 Consider equivalent models



Model Respecification

 Model trimming and building
 Empirical vs. theoretical respecification
 Consider equivalent models



Comparison of Models 

 Hierarchical Models: 
 Difference of 2 test

 Non-hierarchical Models:
 Compare model fit indices



Sample Size Guidelines

 Small (under 100), Medium (100-200), Large (200+) [try for 
medium, large better]

 Models with 1-2 df may require samples of thousands for model-
level power of .8.

 When df=10 may only need n of 300-400 for model level power 
of .8.

 When df > 20 may only need n of 200 for power of .8
 20:1 is ideal ratio for # cases/# free parameters, 10:1 is ok, less 

than 5:1 is almost certainly problematic
 For regression, N > 50 + 8m for overall R2, with m = # IVs and 

N > 104 + m for individual predictors



Statistical Power

 Use power analysis tables from Cohen to assess power 
of specific detecting path coefficient.

 Saris & Satorra: use χ2 difference test using predicted 
covariance matrix compared to one with that path = 0

 McCallum et al. (1996) based on RMSEA and chi-
square distribution for close fit, not close fit and exact 
fit

 Small number of computer programs that calculate 
power for SEM at this point



Power Analysis for testing 
DATA-MODEL  fit

 H0: ε0≥ 0.05
The Null hypothesis: The data-model fit is 
unacceptable

 H1: ε1< 0.05 
The Alternative hypothesis: The data-model fit  is 
acceptable 

If RMSEA  from the model fit is less than 0.05, then 
the null hypothesis containing unacceptable 
population data-model fit is rejected  



Post Hoc Power Analysis for testing 
Data-Model fit 

 If ε1 is close to 0  Power increases

 If  N (sample size) increases  Power 
increases

 If df ( degree of freedom) increases Power 
increases



Post Hoc Power Analysis for testing 
Data-Model fit

Examples Using Appendix B calculate power 
for ε1 =0.02, df=55,  N=400 Power ?
for ε1 =0.04, df=30,  N=400 Power ? 



Section 7:
Confirmatory Factor Analysis



Factor Analysis

Single Measure in Path Analysis
 Measurement error is higher

Multiple Measures in Factor Analysis correspond to 
some type of HYPOTHETICAL CONSTRUCT

 Reduce the overall effect of measurement error



Latent Construct

 Theory  guides through the scale development 
process (DeVellis,1991; Jackson, 1970)

 Unidimensional  vs Multidimensional constuct
 Reliability and Validity of construct



Reliability   - consistency, precision,       
repeatability 

Reliability  concerns with RANDOM ERROR
Types  of reliability:

 test-retest
 alternate form
 interrater 
 split-half and internal consistency 



Validity of construct
4 types of validity
 content 
 criterion-related 
 convergent and discriminant
 construct



Factor analysis

 Indicators: continuous

 Measurement error are independent of each 
other and of the factors

 All associations between the factors are 
unanalyzed



Two Classes of Factor Analysis

Exploratory Factor Analysis
 Exploring possible factors
 Factor analysis you’re probably used to

Confirmatory Factor Analysis
 Testing possible models of factor structure
 Using previous findings



Identification of CFA

 Can estimate  v*(v+1)/2 of parameters
 Necessary 

 # of free parameters <=  # of observations
 Every latent variable should be scaled



Additional: fix the unstandardized residual path of the 
error to 1. (assign a scale of the unique variance of its 
indicator)

Scaling factor: constrain one of the factor loadings to 1

( that variables called – reference variable, the factor has 
a scale related to the explained variance of the reference 
variable)

OR

fix factor variance to a constant ( ex. 1), so all 
factor loadings are free parameters

Both methods of scaling  result in the same overall

fit of the model



Identification of CFA

 Sufficient :
 At least three (3) indicators per factor to make the  

model identified
 Two-indicator rule – prone to estimation problems 

(esp. with small sample size)



Interpretation of the estimates

Unstandardized solution
 Factor loadings  =unstandardized regression coefficient
 Unanalyzed association between factors  or errors= covariances 

• Standardized solution
 Unanalyzed association between factors  or errors= correlations
 Factor loadings  =standardized regression coefficient 

( structure coefficient)

 The square of the factor loadings = the proportion of the 
explained ( common) indicator variance, R2(squared multiple 
correlation)



Problems in estimation of CFA

 Heywood cases – negative variance estimated or correlations > 
1.

 Ratio of the sample size to the  free parameters – 10:1 ( better 
20:1)

 Nonnormality – affects ML estimation

Suggestions by March and Hau(1999)when sample size is 
small: 

 indicators with high standardized loadings( >0.6) 
 constrain the factor loadings



Testing CFA models

 Test for a single factor  with the theory or not
 If reject H0  of good fit - try two-factor model…
 Since one-factor model is restricted version of the two -

factor model , then compare one-factor model to two-factor 
model using Chi-square test . If the Chi-square is significant 
– then the 2-factor model is better than 1-factor model.

 Check R2 of the unexplained variance of the indicators.



Respecification of CFA

IF
 lower factor loadings of 

the  indicator 
(standardized<=0.2) 

 High loading on more 
than one factor

 High correlation of the 
residuals  

 High factor correlation

THEN
 Specify that indicator on a 

different factor

 Allow to load on one more 
than one factor

(multidimensional vs unidimensional)

 Allow error measurements to 
covary

 Too many factors specified



Other tests

 Indicators:
 congeneric – measure the same construct

if model fits , then 
-tau-equivalent – constrain all unstandardized 

loadings to 1
if model fit, then

- parallelism – equality of error variances

 All these can be tested by χ2 difference test



Nonnormal distributions

 Normalize with transformations
 Use corrected normal theory method, e.g. use robust 

standard errors and corrected test statistics, ( Satorra-Bentler 
statistics)

 Use Asymptotic distribution free or arbitrary distribution 
function (ADF)  - no distribution assumption  - Need large 
sample

 Use elliptical distribution theory – need only symmetric 
distribution

 Mean-adjusted weighted least squares (MLSW) and variance-
adjusted weighted least square (VLSW)  - MPLUS with 
categorical indicators

 Use normal theory with  nonparametric bootstrapping



Remedies to nonnormality

 Use a parcel which is a linear composite of the 
discrete scores, as continuous indicators   

 Use parceling  ,when underlying factor is 
unidimentional.



Section 8:
Putting it All Together:

Structural Regression Models



Testing Models with Structural and 
Measurement Components

 Identification Issues
 For the structural portion of SR model to be identified, its 

measurement portion must be identified.
 Use the two-step rule: Respecify the SR model as CFA with 

all possible unanalyzed associations among factors. Assess 
identificaiton.

 View structural portion of the SR model and determine if it is 
recursive.  If so, it is identified.  If not, use order and rank 
conditions.



The 2-Step Approach

 Anderson & Gerbing’s approach
 Saturated model, theoretical model of interest
 Next most likely constrained and unconstrained 

structural models
 Kline and others’ 2-step approach:

 Respecify SR as CFA.  Then test various SR models.



The 4-Step Approach

 Factor Model
 Confirmatory Factor Model
 Anticipated Structural Equation Model
 More Constrained Structural Equation Model



Constraint Interaction

 When chi-square and parameter estimates differ depending on 
whether loading or variance is constrained.

 Test: If loadings have been constrained, change to a new 
constant.  If variance constrained, fix to a constant other than 
1.0.  If chi-square value for modified model is not identical, 
constraint interaction is present.  Scale based on substantive 
grounds.



Single Indicators in Partially Latent 
SR Models

Estimate proportion of variance of variable due to 
error (unique variance).  Multiply by variance of 
measured variable.



Section 9
Multiple-Group Models,

a Word about Latent Growth Models,
Pitfalls, Critique and 

Future Directions for SEM 



Multiple-Group Models

 Main question addressed: do values of model 
parameters vary across groups?

 Another equivalent way of expressing this question: 
does group membership moderate the relations 
specified in the model?

 Is there an interaction between group membership and 
exogenous variables in effect on endogenous variables?



Cross-group equality constraints

 One model is fit for each group, with equal 
unstandardized coefficients for a set of 
parameters in the model

 This model can be compared to an 
unconstrained model in which all parameters are 
unconstrained to be equal between groups



Latent Growth Models

Latent Growth Models in SEM 
are often structural regression 
models with mean structures



Mean Structures

 Means are estimated by regression of variables 
on a constant 

 Parameters of a mean structure include means of 
exogenous variables and intercepts of 
endogenous variables.

 Predicted means of endogenous variables can be 
compared to observed means.



Principles of Mean Structures in 
SEM

 When a variable is regressed on a predictor and a 
constant, the unstandardized coefficient for the 
constant is the intercept.

 When a predictor is regressed on a constant, the 
undstandardized coefficient is the mean of the 
predictor.

 The mean of an endogenous variable is a function of 
three parameters: the intercept, the unstandardized path 
coefficient, and the mean of the exogenous variable.



Requirements for LGM
within SEM

 continuous dependent variable measured on at least 
three different occasions

 scores that have the same units across time, can be said 
to measure the same construct at each assessment, and 
are not standardized

 data that are time structured, meaning that cases are all 
tested at the same intervals (not need be equal intervals)



Pitfalls--Specification

 Specifying the model after data collection
 Insufficient number of indicators.  Kenny: “2 

might be fine, 3 is better, 4 is best, more is 
gravy”

 Carefully consider directionality
 Forgetting about parsimony
 Adding disturbance or measurement errors 

without substantive justification



Pitfalls--Data

 Forgetting to look at missing data patterns
 Forgetting to look at distributions, outliers, or 

non-linearity of relationships
 Lack of independence among observations due 

to clustering of individuals



Pitfalls—
Analysis/Respecification

 Using statistical results only and not theory to respecify 
a model

 Failure to consider constraint interactions and 
Heywood cases (illogical values for parameters)

 Use of correlation matrix rather than covariance matrix
 Failure to test measurement model first
 Failure to consider sample size vs. model complexity



Pitfalls--Interpretation

 Suggesting that “good fit” proves the model
 Not understanding the difference between good fit and 

high R2

 Using standardized estimates in comparing multiple-
group results

 Failure to consider equivalent or (nonequivalent) 
alternative models

 Naming fallacy
 Suggesting results prove causality



Critique

 The multiple/alternative models problem
 The belief that the “stronger” method and path 

diagram proves causality
 Use of SEM for model modification rather than 

for model testing.  Instead:
 Models should be modified before SEM is 

conducted or
 Sample sizes should be large enough to modify the 

model with half of the sample and then cross-
validate the new model with the other half



Future Directions

 Assessment of interactions
 Multiple-level models
 Curvilinear effects
 Dichotomous and ordinal variables



Final Thoughts

 SEM can be useful, especially to:
 separate measurement error from structural relationships
 assess models with multiple outcomes
 assess moderating effects via multiple-sample analyses
 consider bidirectional relationships

 But be careful.  Sample size concerns, lots of model 
modification, concluding too much, and not 
considering alternative models are especially important 
pitfalls.



AMOS, Part 2




Modification of the Model

 Search for the better model

 Suggestions from: 1) theory
2) modification indices 

using AMOS



Modifying the Model using AMOS

 View/Set Analysis 
Properties and  click on the 
Output tab. 

 Then check the Modification 
indices option



Modifying the Model using AMOS

Modification Indices (Group number 1 - Default model)

Covariances: (Group number 1 - Default model)

eiss <--> efr1 9.909 .171

M.I. Par Change

Chi-square 
decrease

Parameter 
increase



Modifying the Model using AMOS

3.74
ISSUEB1

3.08 SXPYRC1

0, 2.80
eSXPYRC1

1

.16

1.45, .25

SEX1

0, 1.36
eiss

5.58 FRBEHB1

0, 1.94
efr1

1 1
.49

-.28
.30

2.38, .17

IDM

-.38
-.57

-.02

.17

SEE Handout # 2  for the whole output 



Examples using AMOS

 Condom Use Model with missing values

 Confirmatory Factor Analysis for Impulsive 
Decision Making construct

 Multiple group analysis 

 How to deal with non-normal data



Missing data in AMOS

 Full Information  Maximum Likelihood  
estimation 

• View/Set -> Analysis Properties and  
click on the Estimation tab. 

• Click on the button Estimate Means and 
Intercepts. This  uses  FIML estimation

Recalculate the previous example with
data “AMOS_data.sav” with some  
missing values



Missing data in AMOS

 The standardized graphical output.
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Missing data in AMOS

Example: see the handout #3



Confirmatory Factor Analysis with
Impulsive Decision Making  scale

 Need to fix either the variance of the IDM1 factor or one of the 
loadings to 1.

0,idm1

IDMA1R

0,
e1

1

1

IDMC1R

0,
e2

1

IDME1R

0,
e3

1

IDMJ1R

0,
e4

1



Confirmatory Factor Analysis with
Impulsive Decision Making  scale

idm1

.30

IDMA1R

e1

.55

.26

IDMC1R

e2

.51

.47

IDME1R

e3

.69

.47

IDMJ1R

e4

.69

Chi-square = 11.621 Degrees of freedom = 2, p=0.003
CFI=0.994,  RMSEA=0.042

Multiple 
Correlation

Factor 
Loadings



Confirmatory Factor Analysis with
Impulsive Decision Making  scale

 What if want to compare two NESTED models for 
Impulsive Decision Making Model?

1) error variances equal for all 4 measured variables
2) error variances are different 



Confirmatory Factor Analysis with
Impulsive Decision Making  scale: 

the error variances are the same
 Need to give names to the error variances, by double clicking 

on the error variance. The Object properties will appear, 
click on the Parameter and type the name for the error 
variance( e1, e2...)  in the Variance box. 



Confirmatory Factor Analysis with
Impulsive Decision Making  scale

0,
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0, e1
e1

1

1

IDMC1R
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e2
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Confirmatory Factor Analysis with
Impulsive Decision Making  scale: 

error variances are the same
 Click MODEL FIT , then Manage Models
 In the Manage Models window, click on New. 
 In the Parameter Constraints segment of the window type  

“e1=e2=e3=e4”

Now there are 
two nested models
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Confirmatory Factor Analysis with
Impulsive Decision Making  scale

error variances are the same error variances are  different

Chi-square = 11.621, 
df=3, p=0.003

Chi-square = 56.826, 
df=5, p=0.000



Confirmatory Factor Analysis with 
Impulsive Decision  Making  scale:

error variances are the same
 Compare Nested Models using Chi-square 

difference test:
Model1 ( errors are different)
Chi-square = 11.621,
df=3, p=0.003

Model2( errors the same)
Chi-square = 56.826, 
df=5, p=0.000

Chi-squaredifference=56.826-11.621=45.205 

df=5-3=2

Chi-squarecritical value=5.99  Significant 
Model 2 with Equal error variances fits WORSE
than Model 1



Nested Model Comparisons

Assuming model Error are free to be correct:

Confirmatory Factor Analysis with 
Impulsive Decision  Making  scale:

error variances are the same

Model DF CMIN P
NFI

Delta-1
IFI

Delta-2
RFI

rho-1
TLI

rho2

Errors are the same 3 45.205 .000 .026 .026 .032 .032



Multiple group analysis

 WHY:   test the equality/invariance  of the factor 
loadings for two separate groups 

 HOW : 
1) test the model to both groups separately to check 

the entire model
2) the same model by  multiple group analysis

Example: Do Males and Females can be fitted to  
the same  Condom USE model?

 Need to have 2 separate data files for each group.
 data_boys and data_girls.



Multiple group analysis

• Select Manage Groups... from the 
Model Fit menu. 
• Name the first group “Girls”.
• Next, click on the New button to 
add a second group to the analysis. 
• Name this group “Boys”. 
• AMOS 4.0 will allow you to 
consider up to 16 groups per 
analysis.

• Each newly created group is 
represented by its own path diagram



Multiple group analysis
• Select File->Data Files... to 
launch the Data Files dialog 
box.

• For each group, specify the 
relevant data file name. 

• For this example, choose 
the data_girls SPSS 
database for the girls' group;

• choose the data_boys
SPSS database for the boys' 
group.



Multiple group analysis

 Click Model Fit and Multiple Groups.
This gives a name to every parameter in the model in each group. 

The following models fit to both groups (see handout) :

Unconstrained – all parameters are different in  each group

Measurement weights – regression loadings are the same in both 
groups

Measurement intercepts – the same intercepts for both groups

Structural weights – the same regression loadings between the  
latent var. 

Structural intercepts – the same intercepts for the latent variables 

Structural covariates – the same variances/covariance  for the 
latent var.

Structural residuals – the same disturbances

Measurement residuals – the same errors-THE MOST RESTRICTIVE 
MODEL



Example: Multiple group analysis 
for Condom use Model 

UNCONSTRAINED MODEL
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Example: Multiple group analysis for 
Condom use Model 
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Example: Multiple group analysis for 
Condom use Model

 see handout

 Since Measurement Weights model is nested within 
Unconstrained . 

 Chi-square difference test computed to test the 
null hypothesis that the regression weights for boys 
and girls are the same.  However, the variances and 
covariance are different across groups.



Example: Multiple group analysis for 
Condom use Model

Chi-squarediff =68.901-65.119=2.282
df=29-26=3  NOT SIGNIFICANT 

FIT of the Measurement Weights model is not significantly 
worse than Unconstrained



Handling non-normal data:

 Verify that your variables are not distributed joint 
multivariate normal

 Assess overall model fit using the Bollen-Stine 
corrected p-value 

 Use the bootstrap to generate parameter estimates, 
standard errors of parameter estimates, and 
significance tests for individual parameters 



Handling non-normal data: checking for 
normality

To verify that the data is not 
normal. Check  the Univariate 
SKEWNESS and KURTOSIS for 
each variable .

• View/Set -> Analysis Properties

and  click on the Output tab. 

•Click on the button Tests for 
normality  and outliers



Handling non-normal data: checking for 
normality

Assessment of normality

Variable min max skew c.r. kurtosis c.r.

IDM 1.182 3.727 .381 4.649 .496 3.025

SEX1 1.000 2.000 .182 2.222 -1.967 -11.997

FRBEHB1 1.000 6.000 -.430 -5.245 -.778 -4.748

ISSUEB1 1.000 4.000 -.431 -5.259 -1.387 -8.462

SXPYRC1 2.000 7.000 -.937 -11.436 -.715 -4.360

Multivariate -3.443 -6.149

Critical ratio of +/- 2 for skewness and kurtosis 
statistical significance of  NON-NORMALLITY

Multivariate  kurtosis >10 Severe Non-normality  



Degree of  freedom Chi-square critical value

1 3.841

2 5.991

3 7.815

4 9.488

5 11.070

6 12.592

7 14.067

8 15.507

9 16.919

10 18.307

11 19.675

Upper  critical values  of chi-square 
distribution 


